Kuznetsov Nikolai, Qin Huajun, Flajšman Lukáš, van Dijken Sebastiaan
NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
School of Physics and Technology, Wuhan University, Wuhan 430072, China.
Sci Adv. 2025 Jan 10;11(2):eads2420. doi: 10.1126/sciadv.ads2420.
Magnonics, which harnesses the unique properties of spin waves, offers promising advancements in data processing due to its broad frequency range, nonlinear dynamics, and scalability for on-chip integration. Effective information encoding in magnonic systems requires precise spatial and temporal control of spin waves. Here, we demonstrate the rapid optical control of spin-wave transport in hybrid magnonic-plasmonic structures. By using thermoplasmonic heating in yttrium iron garnet films integrated with gold nanodisk arrays, we achieve a suppression of spin-wave signals by 20 dB using single laser pulses lasting just a few hundred nanoseconds. Our results reveal a strong correlation between plasmonic light absorption and spin-wave manipulation, as supported by micromagnetic simulations that emphasize the crucial role of magnonic refraction. This study establishes thermoplasmonics as a powerful tool for controlling spin-wave propagation, bridging the fields of magnonics and plasmonics, and paving the way for the development of multifunctional hybrid magnonic devices.
磁子学利用自旋波的独特特性,因其宽频率范围、非线性动力学以及片上集成的可扩展性,在数据处理方面有着广阔的发展前景。在磁子系统中进行有效的信息编码需要对自旋波进行精确的空间和时间控制。在此,我们展示了在混合磁子 - 等离子体结构中对自旋波传输的快速光学控制。通过在与金纳米盘阵列集成的钇铁石榴石薄膜中使用热等离子体加热,我们利用持续仅几百纳秒的单个激光脉冲实现了自旋波信号20分贝的抑制。我们的结果揭示了等离子体光吸收与自旋波操控之间的强相关性,这得到了强调磁子折射关键作用的微磁模拟的支持。这项研究将热等离子体学确立为控制自旋波传播的有力工具,架起了磁子学和等离子体学领域之间的桥梁,并为多功能混合磁子器件的发展铺平了道路。