Department of Applied Physics, Center for NanoMaterials (cNM), Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
Nat Commun. 2014 Jul 10;5:4333. doi: 10.1038/ncomms5333.
Spin currents have an important role in many proposed spintronic devices, as they govern the switching process of magnetic bits in random access memories or drive domain wall motion in magnetic shift registers. The generation of these spin currents has to be fast and energy efficient for realization of these envisioned devices. Recently it has been shown that femtosecond pulsed-laser excitation of thin magnetic films creates intense and ultrafast spin currents. Here we utilize this method to change the orientation of the magnetization in a magnetic bilayer by spin-transfer torque on sub-picosecond timescales. By analysing the dynamics of the magnetic bilayer after laser excitation, the rich physics governing ultrafast spin-transfer torque are elucidated opening up new pathways to ultrafast magnetization reversal, but also providing a new method to quantify optically induced spin currents generated on femtosecond timescales.
自旋电流在许多提出的自旋电子器件中起着重要作用,因为它们控制着随机存取存储器中磁位的切换过程或在磁移位寄存器中驱动畴壁运动。为了实现这些设想的设备,这些自旋电流的产生必须快速且节能。最近已经表明,通过飞秒脉冲激光激发薄磁膜可以产生强烈的超快自旋电流。在这里,我们利用这种方法在皮秒时间尺度上通过自旋转移力矩来改变磁性双层的磁化方向。通过分析激光激发后磁性双层的动力学,阐明了超快自旋转移力矩的丰富物理,为超快磁化反转开辟了新途径,同时也为在飞秒时间尺度上产生的光诱导自旋电流的定量提供了新方法。