Huang Tom T, Taylor David G, Sedlak Miroslav, Mosier Nathan S, Ladisch Michael R
Laboratory of Renewable Resources Engineering (LORRE), School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-2022, USA.
Anal Chem. 2005 Jun 1;77(11):3671-5. doi: 10.1021/ac048228i.
We report a rapid microfluidic device construction technique which does not employ lithography or stamping methods. Device assembly physically combines a silicon wafer, an elastomer (poly(dimethylsiloxane) (PDMS)), and microfibers to form patterns of hydrophobic channels, wells, elbows, or orifices that direct fluid flow into controlled boundary layers. Tweezers are used to place glass microfibers in a defined pattern onto an elastomeric (PDMS) hydrophobic film. The film is then manually pressed onto a hydrophobic silicon wafer, causing it to adhere to the silicon wafer and form a liquid-tight seal around the fibers. Completed in 15 min, the technique results in an operable microdevice with micrometer-scale features of nanoliter volume. Microfiber-directed boundary flow is achieved by use of the surface wetting properties of the hydrophilic glass fiber and the hydrophobicity of surrounding surfaces. The simplicity of this technique allows quick prototyping of microfluidic components, as well as complete biosensor systems, such as we describe for the detection of pathogenic bacteria.
我们报道了一种快速的微流控设备构建技术,该技术不采用光刻或冲压方法。设备组装通过物理方式将硅片、弹性体(聚二甲基硅氧烷(PDMS))和微纤维结合在一起,形成疏水通道、孔、弯头或孔口的图案,这些图案引导流体流入受控的边界层。用镊子将玻璃微纤维以特定图案放置在弹性体(PDMS)疏水膜上。然后将该膜手动压在疏水硅片上,使其粘附在硅片上,并在纤维周围形成液密密封。该技术在15分钟内完成,可得到具有纳升级微尺度特征的可操作微型设备。通过利用亲水性玻璃纤维的表面润湿性和周围表面的疏水性来实现微纤维引导的边界流。这种技术的简单性使得微流控组件以及完整的生物传感器系统能够快速原型制作,比如我们所描述的用于检测病原菌的系统。