Suppr超能文献

Long-term phosphorus effects on evolving physicochemical properties of iron and aluminum hydroxides.

作者信息

Makris Konstantinos C, Harris Willie G, O'Connor George A, El-Shall Hassan

机构信息

Environmental Geochemistry Laboratory, Center for Water Research, University of Texas, San Antonio, TX 78249-0663, USA.

出版信息

J Colloid Interface Sci. 2005 Jul 15;287(2):552-60. doi: 10.1016/j.jcis.2005.02.011.

Abstract

Iron (Fe) and aluminum (Al) hydroxides are highly reactive components in environmental processes, such as contaminant fate and transport. Phosphorus (P) sorption by these components can decrease environmental problems associated with excess accumulation of P in soils. The long-term stability of P sorbed by Fe/Al hydroxides is of major concern. Synthetic Fe and Al hydroxides coprecipitated with P (1:1 metal:P molar ratio) were incubated at 70 degrees C for 24 months to simulate natural long-term weathering processes that could influence the stability of sorbed P. Heat incubation (70 degrees C) of the untreated (no P) Al hydroxides resulted in drastic decreases (within the first month of incubation) in oxalate-Al extractability, specific surface area (SSA), and micropore volume with time. These changes were consistent with the formation of pseudoboehmite. Untreated Fe hydroxides showed no formation of crystalline components following heating (70 degrees C) for 24 months. Much smaller changes in oxalate-Al, P extractability, and SSA values were observed in the P-treated Al particles when compared with the untreated. Phosphorus treatment of both Fe and Al hydroxides stabilized the particle surfaces and prevented structural arrangements toward a long-range ordered phase. Slight reduction in SSA of the P-treated particles was related to dehydration phenomena during heating at 70 degrees C. Monitoring of physicochemical properties of the solids after heating at 70 degrees C for 2 years showed that sorbed P may be stable in the long-term. Understanding long term physicochemical properties may help engineers to optimize the Fe/Al hydroxides performance in several environmental/industrial applications.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验