Favero Gabriele, Campanella Luigi, Cavallo Stefano, D'Annibale Andrea, Perrella Maurizio, Mattei Elisabetta, Ferri Tommaso
Dipartimento di Chimica and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Università di Roma "La Sapienza", P.le Aldo Moro, 5-00185 Roma, Italy.
J Am Chem Soc. 2005 Jun 8;127(22):8103-11. doi: 10.1021/ja042904g.
The realization of a reliable receptor biosensor requires stable, long-lasting, reconstituted biomembranes able to supply a suitable biomimetic environment where the receptor can properly work after incorporation. To this end, we developed a new method for preparing stable biological membranes that couple the biomimetic properties of BLMs (bilayer lipid membranes) with the high stability of HBMs (hybrid bilayer membranes); this gives rise to an innovative assembly, named MHBLM (mixed hybrid bilayer lipid membrane). The present work deals with the characterization of biosensors achieved by embedding an ionotropic glutamate receptor (GluR) on MHBLM. Thanks to signal (transmembrane current) amplification, which is typical of natural receptors, the biosensor here produced detects glutamate at a level of nmol L(-1). The transmembrane current changes linearly vs glutamate up to 100 nmol L(-1), while the limit of detection is 1 nmol L(-1). In addition, the biosensor response can be modulated both by receptor agonists (glycine) and antagonists (Mg(2+)) as well, and by exploiting the biosensor response, the distribution of different kinds of ionotropic GluR present in the purified sample, and embedded in MHBLM, was also evaluated. Finally, one of the most important aspects of this investigation is represented by the high stability of the biomimetic system, which allows the use of biosensor under flowing conditions, where the solutions flow on both biomembrane faces.
要实现可靠的受体生物传感器,需要稳定、持久、重构的生物膜,能够提供一个合适的仿生环境,使受体在整合后能够正常工作。为此,我们开发了一种制备稳定生物膜的新方法,该方法将双层脂质膜(BLM)的仿生特性与混合双层膜(HBM)的高稳定性相结合;这产生了一种创新的组装体,称为混合双层脂质膜(MHBLM)。本工作涉及通过将离子型谷氨酸受体(GluR)嵌入MHBLM实现的生物传感器的表征。由于天然受体典型的信号(跨膜电流)放大作用,此处制备的生物传感器能够检测纳摩尔每升(nmol L(-1))水平的谷氨酸。跨膜电流与谷氨酸浓度在高达100 nmol L(-1)范围内呈线性变化,而检测限为1 nmol L(-1)。此外,生物传感器的响应可以通过受体激动剂(甘氨酸)和拮抗剂(Mg(2+))进行调节,并且利用生物传感器的响应,还评估了纯化样品中存在并嵌入MHBLM的不同种类离子型GluR的分布。最后,这项研究最重要的方面之一是仿生系统的高稳定性,这使得生物传感器能够在流动条件下使用,即溶液在生物膜的两面流动。