Suppr超能文献

用于计算蛋白质-配体结合熵的新型快速统计热力学方法显著提高对接精度。

New and fast statistical-thermodynamic method for computation of protein-ligand binding entropy substantially improves docking accuracy.

作者信息

Ruvinsky A M, Kozintsev A V

机构信息

Force Field Laboratory, Algodign, LLC, B. Sadovaya, 8, 103379, Moscow, Russia.

出版信息

J Comput Chem. 2005 Aug;26(11):1089-95. doi: 10.1002/jcc.20246.

Abstract

We present a novel method to estimate the contributions of translational and rotational entropy to protein-ligand binding affinity. The method is based on estimates of the configurational integral through the sizes of clusters obtained from multiple docking positions. Cluster sizes are defined as the intervals of variation of center of ligand mass and Euler angles in the cluster. Then we suggest a method to consider the entropy of torsional motions. We validate the suggested methods on a set of 135 PDB protein-ligand complexes by comparing the averaged root-mean square deviations (RMSD) of the top-scored ligand docked positions, accounting and not accounting for entropy contributions, relative to the experimentally determined positions. We demonstrate that the method increases docking accuracy by 10-21% when used in conjunction with the AutoDock docking program, thus reducing the percent of incorrectly docked ligands by 1.4-fold to four-fold, so that in some cases the percent of ligands correctly docked to within an RMSD of 2 A is above 90%. We show that the suggested method to account for entropy of relative motions is identical to the method based on the Monte Carlo integration over intervals of variation of center of ligand mass and Euler angles in the cluster.

摘要

我们提出了一种新方法来估计平动熵和转动熵对蛋白质-配体结合亲和力的贡献。该方法基于通过从多个对接位置获得的簇的大小来估计构型积分。簇的大小定义为簇中配体质心和欧拉角的变化区间。然后我们提出了一种考虑扭转运动熵的方法。我们通过比较相对于实验确定位置的、考虑和不考虑熵贡献的得分最高的配体对接位置的平均均方根偏差(RMSD),在一组135个PDB蛋白质-配体复合物上验证了所提出的方法。我们证明,当与AutoDock对接程序结合使用时,该方法可将对接准确率提高10%-21%,从而将错误对接配体的百分比降低1.4倍至4倍,以至于在某些情况下,正确对接至RMSD在2 Å以内的配体百分比超过90%。我们表明,所提出的考虑相对运动熵的方法与基于对簇中配体质心和欧拉角变化区间进行蒙特卡罗积分的方法相同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验