Suppr超能文献

多种对接和精修方法在 2016 年 D3R 展望性大分子对接竞赛中构象预测的表现。

Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016.

机构信息

Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02215, USA.

Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033-1310, USA.

出版信息

J Comput Aided Mol Des. 2018 Jan;32(1):113-127. doi: 10.1007/s10822-017-0053-2. Epub 2017 Sep 14.

Abstract

We describe the performance of multiple pose prediction methods for the D3R 2016 Grand Challenge. The pose prediction challenge includes 36 ligands, which represent 4 chemotypes and some miscellaneous structures against the FXR ligand binding domain. In this study we use a mix of fully automated methods as well as human-guided methods with considerations of both the challenge data and publicly available data. The methods include ensemble docking, colony entropy pose prediction, target selection by molecular similarity, molecular dynamics guided pose refinement, and pose selection by visual inspection. We evaluated the success of our predictions by method, chemotype, and relevance of publicly available data. For the overall data set, ensemble docking, visual inspection, and molecular dynamics guided pose prediction performed the best with overall mean RMSDs of 2.4, 2.2, and 2.2 Å respectively. For several individual challenge molecules, the best performing method is evaluated in light of that particular ligand. We also describe the protein, ligand, and public information data preparations that are typical of our binding mode prediction workflow.

摘要

我们描述了多种姿势预测方法在 D3R 2016 年大挑战中的表现。姿势预测挑战包括 36 种配体,它们代表了 4 种化学型和一些杂项结构,针对 FXR 配体结合域。在这项研究中,我们使用了混合的全自动方法以及人类指导的方法,同时考虑了挑战数据和公开可用的数据。这些方法包括基于集合的对接、群体熵姿势预测、基于分子相似性的靶标选择、分子动力学引导的姿势细化和基于视觉检查的姿势选择。我们通过方法、化学型和公开数据的相关性来评估我们预测的成功。对于整个数据集,基于集合的对接、视觉检查和分子动力学引导的姿势预测表现最好,整体平均 RMSD 分别为 2.4、2.2 和 2.2Å。对于几个个别挑战分子,根据该特定配体评估了表现最好的方法。我们还描述了我们的结合模式预测工作流程中典型的蛋白质、配体和公共信息数据准备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验