Suppr超能文献

用于预测蛋白质-配体相互作用的基于知识的评分函数。

Knowledge-based scoring function to predict protein-ligand interactions.

作者信息

Gohlke H, Hendlich M, Klebe G

机构信息

Department of Pharmaceutical Chemistry, Marbacher Weg 6, Philipps-University of Marburg, D-35032, Germany.

出版信息

J Mol Biol. 2000 Jan 14;295(2):337-56. doi: 10.1006/jmbi.1999.3371.

Abstract

The development and validation of a new knowledge-based scoring function (DrugScore) to describe the binding geometry of ligands in proteins is presented. It discriminates efficiently between well-docked ligand binding modes (root-mean-square deviation <2.0 A with respect to a crystallographically determined reference complex) and those largely deviating from the native structure, e.g. generated by computer docking programs. Structural information is extracted from crystallographically determined protein-ligand complexes using ReLiBase and converted into distance-dependent pair-preferences and solvent-accessible surface (SAS) dependent singlet preferences for protein and ligand atoms. Definition of an appropriate reference state and accounting for inaccuracies inherently present in experimental data is required to achieve good predictive power. The sum of the pair preferences and the singlet preferences is calculated based on the 3D structure of protein-ligand binding modes generated by docking tools. For two test sets of 91 and 68 protein-ligand complexes, taken from the Protein Data Bank (PDB), the calculated score recognizes poses generated by FlexX deviating <2 A from the crystal structure on rank 1 in three quarters of all possible cases. Compared to FlexX, this is a substantial improvement. For ligand geometries generated by DOCK, DrugScore is superior to the "chemical scoring" implemented into this tool, while comparable results are obtained using the "energy scoring" in DOCK. None of the presently known scoring functions achieves comparable power to extract binding modes in agreement with experiment. It is fast to compute, regards implicitly solvation and entropy contributions and produces correctly the geometry of directional interactions. Small deviations in the 3D structure are tolerated and, since only contacts to non-hydrogen atoms are regarded, it is independent from assumptions of protonation states.

摘要

本文介绍了一种基于知识的新评分函数(DrugScore)的开发与验证,该函数用于描述配体在蛋白质中的结合几何结构。它能够有效地区分对接良好的配体结合模式(相对于晶体学确定的参考复合物,均方根偏差<2.0 Å)和那些与天然结构有较大偏差的模式,例如由计算机对接程序生成的模式。使用ReLiBase从晶体学确定的蛋白质-配体复合物中提取结构信息,并将其转换为蛋白质和配体原子的距离依赖性配对偏好和溶剂可及表面(SAS)依赖性单重态偏好。为了获得良好的预测能力,需要定义合适的参考状态并考虑实验数据中固有的不准确性。配对偏好和单重态偏好的总和是基于对接工具生成的蛋白质-配体结合模式的三维结构计算得出的。对于从蛋白质数据库(PDB)中选取的两组分别包含91个和68个蛋白质-配体复合物的测试集,计算得到的分数在四分之三的所有可能情况下都能识别出FlexX生成的与晶体结构偏差<2 Å的构象,且排名第一。与FlexX相比,这是一个显著的改进。对于DOCK生成的配体几何结构,DrugScore优于该工具中实现的“化学评分”,而使用DOCK中的“能量评分”可获得类似的结果。目前已知的评分函数中,没有一个在提取与实验一致的结合模式方面具有可比的能力。它计算速度快,隐含地考虑了溶剂化和熵的贡献,并能正确地产生定向相互作用的几何结构。它能容忍三维结构中的小偏差,并且由于只考虑与非氢原子的接触,所以与质子化状态的假设无关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验