Suppr超能文献

Critical features for the recognition of biological motion.

作者信息

Casile Antonino, Giese Martin A

机构信息

Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University Clinic, Tübingen, Germany.

出版信息

J Vis. 2005 Apr 18;5(4):348-60. doi: 10.1167/5.4.6.

Abstract

Humans can perceive the motion of living beings from very impoverished stimuli like point-light displays. How the visual system achieves the robust generalization from normal to point-light stimuli remains an unresolved question. We present evidence on multiple levels demonstrating that this generalization might be accomplished by an extraction of simple mid-level optic flow features within coarse spatial arrangement, potentially exploiting relatively simple neural circuits: (1) A statistical analysis of the most informative mid-level features reveals that normal and point-light walkers share very similar dominant local optic flow features. (2) We devise a novel point-light stimulus (critical features stimulus) that contains these features, and which is perceived as a human walker even though it is inconsistent with the skeleton of the human body. (3) A neural model that extracts only these critical features accounts for substantial recognition rates for strongly degraded stimuli. We conclude that recognition of biological motion might be accomplished by detecting mid-level optic flow features with relatively coarse spatial localization. The computationally challenging reconstruction of precise position information from degraded stimuli might not be required.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验