Shen Li, Yang Xinlin, Jiang Yi, Wang Ying
State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
Front Psychol. 2025 Aug 12;16:1630742. doi: 10.3389/fpsyg.2025.1630742. eCollection 2025.
Biological motion (BM), the movement generated by living entities, transmits signals of life and conveys vital cues for animacy perception. In this review, we synthesize empirical findings from human and non-human animal studies to reveal how BM enjoys a unique position in visual perception as an animate motion and how it elicits animacy perception. Compared to non-biological and inanimate motions, BM engages specialized perceptual processing mechanisms and a dedicated cortical-subcortical network. Local motion cues, especially the foot movements of terrestrial animals, are pivotal in driving such specificity, and emerging evidence supports the existence of an innate, evolutionarily conserved "Life Detector" or "Step Detector" tuned to such information in the human and other vertebrate brains. The direct perception of animacy from BM relies on the processing of low-level kinematic features and mid-level motion features embedded in both intrinsic joint movements and extrinsic body motion. While ecological constraints and implied internal energy sources may serve as generic factors affecting animacy perception from visual motion, how precise BM features (both in intrinsic and extrinsic movements) combine to influence animacy percepts and the neural implementation remain largely unexplored. Addressing these gaps will help establish a framework for understanding BM through the lens of animate motion processing. This approach will offer deeper insights into how the life detection system hardwired in the vertebrate brain distinguishes animate from inanimate motion, further uncovering its broader cognitive and evolutionary implications.
生物运动(BM),即有生命的实体所产生的运动,传递着生命信号,并为感知生命提供重要线索。在这篇综述中,我们综合了来自人类和非人类动物研究的实证结果,以揭示生物运动作为一种有生命的运动在视觉感知中如何占据独特地位,以及它如何引发对生命的感知。与非生物运动和无生命运动相比,生物运动涉及专门的感知处理机制和一个专门的皮质 - 皮质下网络。局部运动线索,尤其是陆生动物的足部运动,在驱动这种特异性方面起着关键作用,并且新出现的证据支持在人类和其他脊椎动物大脑中存在一种天生的、进化上保守的“生命探测器”或“步探测器”,它被调整为处理此类信息。从生物运动中直接感知生命依赖于对嵌入内在关节运动和外在身体运动中的低级运动学特征和中级运动特征的处理。虽然生态限制和隐含的内部能量来源可能是影响从视觉运动中感知生命的一般因素,但精确的生物运动特征(内在和外在运动方面)如何结合以影响对生命的感知以及神经机制在很大程度上仍未得到探索。填补这些空白将有助于建立一个通过有生命的运动处理视角来理解生物运动的框架。这种方法将更深入地洞察脊椎动物大脑中固有的生命检测系统如何区分有生命和无生命的运动,进一步揭示其更广泛的认知和进化意义。