Suppr超能文献

动粒处微管动力学的张力依赖性调节可以解释酵母中的中期染色体排列。

Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast.

作者信息

Gardner Melissa K, Pearson Chad G, Sprague Brian L, Zarzar Ted R, Bloom Kerry, Salmon E D, Odde David J

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Mol Biol Cell. 2005 Aug;16(8):3764-75. doi: 10.1091/mbc.e05-04-0275. Epub 2005 Jun 1.

Abstract

During metaphase in budding yeast mitosis, sister kinetochores are tethered to opposite poles and separated, stretching their intervening chromatin, by singly attached kinetochore microtubules (kMTs). Kinetochore movements are coupled to single microtubule plus-end polymerization/depolymerization at kinetochore attachment sites. Here, we use computer modeling to test possible mechanisms controlling chromosome alignment during yeast metaphase by simulating experiments that determine the 1) mean positions of kinetochore Cse4-GFP, 2) extent of oscillation of kinetochores during metaphase as measured by fluorescence recovery after photobleaching (FRAP) of kinetochore Cse4-GFP, 3) dynamics of kMTs as measured by FRAP of GFP-tubulin, and 4) mean positions of unreplicated chromosome kinetochores that lack pulling forces from a sister kinetochore. We rule out a number of possible models and find the best fit between theory and experiment when it is assumed that kinetochores sense both a spatial gradient that suppresses kMT catastrophe near the poles and attachment site tension that promotes kMT rescue at higher amounts of chromatin stretch.

摘要

在芽殖酵母有丝分裂的中期,姐妹动粒与相对的两极相连并分离,通过单附着的动粒微管(kMTs)拉伸其间的染色质。动粒运动与动粒附着位点处单个微管正端的聚合/解聚相耦合。在这里,我们通过计算机建模来测试控制酵母中期染色体排列的可能机制,模拟实验来确定:1)动粒Cse4-GFP的平均位置;2)通过动粒Cse4-GFP光漂白后的荧光恢复(FRAP)测量的中期动粒振荡程度;3)通过GFP-微管蛋白的FRAP测量的kMTs动态;4)缺乏来自姐妹动粒拉力的未复制染色体动粒的平均位置。我们排除了许多可能的模型,并发现当假设动粒既能感知抑制两极附近kMT灾难的空间梯度,又能感知在染色质拉伸量较高时促进kMT拯救的附着位点张力时,理论与实验之间的拟合度最佳。

相似文献

1
Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast.
Mol Biol Cell. 2005 Aug;16(8):3764-75. doi: 10.1091/mbc.e05-04-0275. Epub 2005 Jun 1.
2
Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase.
Curr Biol. 2004 Nov 9;14(21):1962-7. doi: 10.1016/j.cub.2004.09.086.
3
Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle.
Biophys J. 2003 Jun;84(6):3529-46. doi: 10.1016/S0006-3495(03)75087-5.
4
Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase.
Curr Biol. 2006 Aug 8;16(15):1489-501. doi: 10.1016/j.cub.2006.06.063.
5
A 3D map of the yeast kinetochore reveals the presence of core and accessory centromere-specific histone.
Curr Biol. 2013 Oct 7;23(19):1939-44. doi: 10.1016/j.cub.2013.07.083. Epub 2013 Sep 26.
6
Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics.
Mol Biol Cell. 2003 Oct;14(10):4181-95. doi: 10.1091/mbc.e03-03-0180. Epub 2003 Jul 25.
7
Measuring nanometer scale gradients in spindle microtubule dynamics using model convolution microscopy.
Mol Biol Cell. 2006 Sep;17(9):4069-79. doi: 10.1091/mbc.e06-04-0312. Epub 2006 Jun 28.
9
Kip3, the yeast kinesin-8, is required for clustering of kinetochores at metaphase.
Cell Cycle. 2010 Jul 1;9(13):2581-8. doi: 10.4161/cc.9.13.12076.
10
Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles.
J Cell Biol. 2007 Jul 16;178(2):269-81. doi: 10.1083/jcb.200702141. Epub 2007 Jul 9.

引用本文的文献

2
CKAP5 stabilizes CENP-E at kinetochores by regulating microtubule-chromosome attachments.
EMBO Rep. 2024 Apr;25(4):1909-1935. doi: 10.1038/s44319-024-00106-9. Epub 2024 Feb 29.
3
Mechanical coupling coordinates microtubule growth.
Elife. 2023 Dec 27;12:RP89467. doi: 10.7554/eLife.89467.
4
Mechanical coupling coordinates microtubule growth.
bioRxiv. 2023 Oct 17:2023.06.29.547092. doi: 10.1101/2023.06.29.547092.
5
The microtubule plus-end tracking protein Bik1 is required for chromosome congression.
Mol Biol Cell. 2022 May 1;33(5):br7. doi: 10.1091/mbc.E21-10-0500. Epub 2022 Mar 2.
8
Mitotic spindle: lessons from theoretical modeling.
Mol Biol Cell. 2021 Feb 1;32(3):218-222. doi: 10.1091/mbc.E20-05-0335.

本文引用的文献

1
Rings around kinetochore microtubules in yeast.
Nat Struct Mol Biol. 2005 Mar;12(3):210-2. doi: 10.1038/nsmb0305-210.
2
Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex.
Mol Cell. 2005 Jan 21;17(2):277-90. doi: 10.1016/j.molcel.2004.12.019.
3
The yeast DASH complex forms closed rings on microtubules.
Nat Struct Mol Biol. 2005 Feb;12(2):138-43. doi: 10.1038/nsmb896. Epub 2005 Jan 10.
4
Anaphase spindle mechanics prevent mis-segregation of merotelically oriented chromosomes.
Curr Biol. 2004 Dec 14;14(23):2149-55. doi: 10.1016/j.cub.2004.11.029.
5
DNA replication checkpoint prevents precocious chromosome segregation by regulating spindle behavior.
Mol Cell. 2004 Dec 3;16(5):687-700. doi: 10.1016/j.molcel.2004.11.001.
6
Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase.
Curr Biol. 2004 Nov 9;14(21):1962-7. doi: 10.1016/j.cub.2004.09.086.
7
Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle.
Nature. 2004 Mar 4;428(6978):93-7. doi: 10.1038/nature02328. Epub 2004 Feb 11.
8
Microtubule plus-end dynamics in Xenopus egg extract spindles.
Mol Biol Cell. 2004 Apr;15(4):1776-84. doi: 10.1091/mbc.e03-11-0824. Epub 2004 Feb 6.
9
Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics.
Mol Biol Cell. 2003 Oct;14(10):4181-95. doi: 10.1091/mbc.e03-03-0180. Epub 2003 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验