Pearson Chad G, Maddox Paul S, Zarzar Ted R, Salmon E D, Bloom Kerry
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA.
Mol Biol Cell. 2003 Oct;14(10):4181-95. doi: 10.1091/mbc.e03-03-0180. Epub 2003 Jul 25.
The interaction of kinetochores with dynamic microtubules during mitosis is essential for proper centromere motility, congression to the metaphase plate, and subsequent anaphase chromosome segregation. Budding yeast has been critical in the discovery of proteins necessary for this interaction. However, the molecular mechanism for microtubule-kinetochore interactions remains poorly understood. Using live cell imaging and mutations affecting microtubule binding proteins and kinetochore function, we identify a regulatory mechanism for spindle microtubule dynamics involving Stu2p and the core kinetochore component, Ndc10p. Depleting cells of the microtubule binding protein Stu2p reduces kinetochore microtubule dynamics. Centromeres remain under tension but lack motility. Thus, normal microtubule dynamics are not required to maintain tension at the centromere. Loss of the kinetochore (ndc10-1, ndc10-2, and ctf13-30) does not drastically affect spindle microtubule turnover, indicating that Stu2p, not the kinetochore, is the foremost governor of microtubule dynamics. Disruption of kinetochore function with ndc10-1 does not affect the decrease in microtubule turnover in stu2 mutants, suggesting that the kinetochore is not required for microtubule stabilization. Remarkably, a partial kinetochore defect (ndc10-2) suppresses the decreased spindle microtubule turnover in the absence of Stu2p. These results indicate that Stu2p and Ndc10p differentially function in controlling kinetochore microtubule dynamics necessary for centromere movements.
在有丝分裂过程中,动粒与动态微管之间的相互作用对于着丝粒的正常运动、向中期板的汇聚以及随后的后期染色体分离至关重要。芽殖酵母在发现这种相互作用所需的蛋白质方面发挥了关键作用。然而,微管 - 动粒相互作用的分子机制仍知之甚少。利用活细胞成像以及影响微管结合蛋白和动粒功能的突变,我们确定了一种涉及Stu2p和核心动粒成分Ndc10p的纺锤体微管动力学调控机制。去除微管结合蛋白Stu2p会降低动粒微管动力学。着丝粒仍处于张力之下,但缺乏运动性。因此,维持着丝粒的张力并不需要正常的微管动力学。动粒缺失(ndc10 - 1、ndc10 - 2和ctf13 - 30)并不会显著影响纺锤体微管的更新,这表明Stu2p而非动粒是微管动力学的主要调控者。用ndc10 - 1破坏动粒功能并不会影响stu2突变体中微管更新的减少,这表明微管稳定并不需要动粒。值得注意的是,部分动粒缺陷(ndc10 - 2)在没有Stu2p的情况下会抑制纺锤体微管更新的减少。这些结果表明,Stu2p和Ndc10p在控制着丝粒运动所需的动粒微管动力学方面具有不同的功能。