Suppr超能文献

通过计算建模分析染色体的双定向和双极纺锤体组装的机制。

Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling.

机构信息

Department of Physics, University of Colorado Boulder, Boulder, United States.

Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States.

出版信息

Elife. 2020 Feb 13;9:e48787. doi: 10.7554/eLife.48787.

Abstract

The essential functions required for mitotic spindle assembly and chromosome biorientation and segregation are not fully understood, despite extensive study. To illuminate the combinations of ingredients most important to align and segregate chromosomes and simultaneously assemble a bipolar spindle, we developed a computational model of fission-yeast mitosis. Robust chromosome biorientation requires progressive restriction of attachment geometry, destabilization of misaligned attachments, and attachment force dependence. Large spindle length fluctuations can occur when the kinetochore-microtubule attachment lifetime is long. The primary spindle force generators are kinesin-5 motors and crosslinkers in early mitosis, while interkinetochore stretch becomes important after biorientation. The same mechanisms that contribute to persistent biorientation lead to segregation of chromosomes to the poles after anaphase onset. This model therefore provides a framework to interrogate key requirements for robust chromosome biorientation, spindle length regulation, and force generation in the spindle.

摘要

尽管已经进行了广泛的研究,但对于有丝分裂纺锤体组装和染色体双定向及分离所必需的基本功能仍不完全了解。为了阐明对染色体的定向和分离以及同时组装两极纺锤体最重要的成分组合,我们开发了一种裂殖酵母有丝分裂的计算模型。稳健的染色体双定向需要逐步限制附着几何形状、去稳定未对准的附着以及附着力依赖性。当着丝粒微管附着寿命长时,可能会发生较大的纺锤体长度波动。主要的纺锤体力发生器是早期有丝分裂中的驱动蛋白-5 马达和交联剂,而双定向后着丝粒拉伸变得重要。有助于持续双定向的相同机制导致染色体在后期起始后向两极分离。因此,该模型为研究稳健的染色体双定向、纺锤体长度调节以及纺锤体中的力生成的关键要求提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45fa/7311174/4b6e06ae4f01/elife-48787-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验