Saha Badal C, Iten Loren B, Cotta Michael A, Wu Y Victor
Fermentation Biotechnology Research Unit and New Crops and Processing Technology Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA.
Biotechnol Prog. 2005 May-Jun;21(3):816-22. doi: 10.1021/bp049564n.
Rice hulls, a complex lignocellulosic material with high lignin (15.38 +/- 0.2%) and ash (18.71 +/- 0.01%) content, contain 35.62 +/- 0.12% cellulose and 11.96 +/- 0.73% hemicellulose and has the potential to serve as a low-cost feedstock for production of ethanol. Dilute H2SO4 pretreatments at varied temperature (120-190 degrees C) and enzymatic saccharification (45 degrees C, pH 5.0) were evaluated for conversion of rice hull cellulose and hemicellulose to monomeric sugars. The maximum yield of monomeric sugars from rice hulls (15%, w/v) by dilute H2SO4 (1.0%, v/v) pretreatment and enzymatic saccharification (45 degrees C, pH 5.0, 72 h) using cellulase, beta-glucosidase, xylanase, esterase, and Tween 20 was 287 +/- 3 mg/g (60% yield based on total carbohydrate content). Under this condition, no furfural and hydroxymethyl furfural were produced. The yield of ethanol per L by the mixed sugar utilizing recombinant Escherichia colistrain FBR 5 from rice hull hydrolyzate containing 43.6 +/- 3.0 g fermentable sugars (glucose, 18.2 +/- 1.4 g; xylose, 21.4 +/- 1.1 g; arabinose, 2.4 +/- 0.3 g; galactose, 1.6 +/- 0.2 g) was 18.7 +/- 0.6 g (0.43 +/- 0.02 g/g sugars obtained; 0.13 +/- 0.01 g/g rice hulls) at pH 6.5 and 35 degrees C. Detoxification of the acid- and enzyme-treated rice hull hydrolyzate by overliming (pH 10.5, 90 degrees C, 30 min) reduced the time required for maximum ethanol production (17 +/- 0.2 g from 42.0 +/- 0.7 g sugars per L) by the E. coli strain from 64 to 39 h in the case of separate hydrolysis and fermentation and increased the maximum ethanol yield (per L) from 7.1 +/- 2.3 g in 140 h to 9.1 +/- 0.7 g in 112 h in the case of simultaneous saccharification and fermentation.
稻壳是一种复杂的木质纤维素材料,含有高含量的木质素(15.38±0.2%)和灰分(18.71±0.01%),其纤维素含量为35.62±0.12%,半纤维素含量为11.96±0.73%,有潜力作为生产乙醇的低成本原料。评估了在不同温度(120 - 190℃)下进行稀硫酸预处理以及在45℃、pH 5.0条件下进行酶糖化,以将稻壳纤维素和半纤维素转化为单糖。使用纤维素酶、β - 葡萄糖苷酶、木聚糖酶、酯酶和吐温20,通过稀硫酸(1.0%,v/v)预处理和酶糖化(45℃,pH 5.0,72小时)从稻壳(15%,w/v)中获得的单糖最大产量为287±3 mg/g(基于总碳水化合物含量的产率为60%)。在此条件下,未产生糠醛和羟甲基糠醛。利用重组大肠杆菌菌株FBR 5从含有43.6±3.0 g可发酵糖(葡萄糖,18.2±1.4 g;木糖,21.4±1.1 g;阿拉伯糖,2.4±0.3 g;半乳糖,1.6±0.2 g)的稻壳水解物中每升生产乙醇的产量在pH 6.5和35℃时为18.7±0.6 g(每克获得的糖为0.43±0.02 g;每克稻壳为0.13±0.01 g)。通过过石灰处理(pH 10.5,90℃,30分钟)对酸和酶处理的稻壳水解物进行解毒,在单独水解和发酵的情况下,将大肠杆菌菌株产生最大乙醇产量(每升从42.0±0.7 g糖中产生17±0.2 g)所需的时间从64小时减少到39小时,在同时糖化和发酵的情况下,将最大乙醇产量(每升)从140小时内的7.1±2.3 g提高到112小时内的9.1±0.7 g。