Suppr超能文献

Energy generation from the CO oxidation-hydrogen production pathway in Rubrivivax gelatinosus.

作者信息

Maness Pin-Ching, Huang Jie, Smolinski Sharon, Tek Vekalet, Vanzin Gary

机构信息

National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401-3393, USA.

出版信息

Appl Environ Microbiol. 2005 Jun;71(6):2870-4. doi: 10.1128/AEM.71.6.2870-2874.2005.

Abstract

When incubated in the presence of CO gas, Rubrivivax gelatinosus CBS induces a CO oxidation-H2 production pathway according to the stoichiometry CO + H2O --> CO2 + H2. Once induced, this pathway proceeds equally well in both light and darkness. When light is not present, CO can serve as the sole carbon source, supporting cell growth anaerobically with a cell doubling time of nearly 2 days. This observation suggests that the CO oxidation reaction yields energy. Indeed, new ATP synthesis was detected in darkness following CO additions to the gas phase of the culture, in contrast to the case for a control that received an inert gas such as argon. When the CO-to-H2 activity was determined in the presence of the electron transport uncoupler carbonyl-cyanide m-chlorophenylhydrazone (CCCP), the rate of H2 production from CO oxidation was enhanced nearly 40% compared to that of the control. Upon the addition of the ATP synthase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD), we observed an inhibition of H2 production from CO oxidation which could be reversed upon the addition of CCCP. Collectively, these data strongly suggest that the CO-to-H2 reaction yields ATP driven by a transmembrane proton gradient, but the detailed mechanism of this reaction is not yet known. These findings encourage additional research aimed at long-term H2 production from gas streams containing CO.

摘要

相似文献

1
Energy generation from the CO oxidation-hydrogen production pathway in Rubrivivax gelatinosus.
Appl Environ Microbiol. 2005 Jun;71(6):2870-4. doi: 10.1128/AEM.71.6.2870-2874.2005.
3
Membrane topography of anaerobic carbon monoxide oxidation in Rhodocyclus gelatinosus.
J Bacteriol. 1987 Oct;169(10):4784-9. doi: 10.1128/jb.169.10.4784-4789.1987.
4
Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria.
Eur J Biochem. 1987 Oct 15;168(2):407-12. doi: 10.1111/j.1432-1033.1987.tb13434.x.
5
Genome annotation provides insight into carbon monoxide and hydrogen metabolism in Rubrivivax gelatinosus.
PLoS One. 2014 Dec 5;9(12):e114551. doi: 10.1371/journal.pone.0114551. eCollection 2014.
6
Characterization of genes responsible for the CO-linked hydrogen production pathway in Rubrivivax gelatinosus.
Appl Environ Microbiol. 2010 Jun;76(11):3715-22. doi: 10.1128/AEM.02753-09. Epub 2010 Apr 16.
7
Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate.
Proc Natl Acad Sci U S A. 1976 Sep;73(9):3298-302. doi: 10.1073/pnas.73.9.3298.
8
The first crenarchaeon capable of growth by anaerobic carbon monoxide oxidation coupled with H production.
Syst Appl Microbiol. 2020 Mar;43(2):126064. doi: 10.1016/j.syapm.2020.126064. Epub 2020 Jan 25.

引用本文的文献

2
Carbon Monoxide Induced Metabolic Shift in the Carboxydotrophic DSM 6285.
Microorganisms. 2021 May 19;9(5):1090. doi: 10.3390/microorganisms9051090.
3
Energy-converting hydrogenases: the link between H metabolism and energy conservation.
Cell Mol Life Sci. 2020 Apr;77(8):1461-1481. doi: 10.1007/s00018-019-03329-5. Epub 2019 Oct 19.
5
Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation.
Front Microbiol. 2015 Nov 19;6:1275. doi: 10.3389/fmicb.2015.01275. eCollection 2015.
7
Use of carbon monoxide and hydrogen by a bacteria-animal symbiosis from seagrass sediments.
Environ Microbiol. 2015 Dec;17(12):5023-35. doi: 10.1111/1462-2920.12912. Epub 2015 Jul 23.
8
Genome annotation provides insight into carbon monoxide and hydrogen metabolism in Rubrivivax gelatinosus.
PLoS One. 2014 Dec 5;9(12):e114551. doi: 10.1371/journal.pone.0114551. eCollection 2014.
9
Geosphere-biosphere interactions in bio-activity volcanic lakes: evidences from Hule and Rìo Cuarto (Costa Rica).
PLoS One. 2014 Jul 24;9(7):e102456. doi: 10.1371/journal.pone.0102456. eCollection 2014.
10
Draft genome sequence of Rubrivivax gelatinosus CBS.
J Bacteriol. 2012 Jun;194(12):3262. doi: 10.1128/JB.00515-12.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
A simple energy-conserving system: proton reduction coupled to proton translocation.
Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7545-50. doi: 10.1073/pnas.1331436100. Epub 2003 Jun 5.
6
Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri.
Eur J Biochem. 1999 Oct 1;265(1):325-35. doi: 10.1046/j.1432-1327.1999.00738.x.
9
A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system.
Microbiology (Reading). 1997 Nov;143 ( Pt 11):3633-3647. doi: 10.1099/00221287-143-11-3633.
10
Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum.
J Bacteriol. 1996 Nov;178(21):6200-8. doi: 10.1128/jb.178.21.6200-6208.1996.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验