Suppr超能文献

生长阶段对大肠杆菌D21g黏附动力学的影响。

Influence of growth phase on adhesion kinetics of Escherichia coli D21g.

作者信息

Walker Sharon L, Hill Jane E, Redman Jeremy A, Elimelech Menachem

机构信息

Department of Chemical and Environmental Engineering, University of California, Riverside, B355 Bourns Hall, Riverside, California 92521, USA.

出版信息

Appl Environ Microbiol. 2005 Jun;71(6):3093-9. doi: 10.1128/AEM.71.6.3093-3099.2005.

Abstract

The influence of bacterial growth stage and the evolution of surface macromolecules on cell adhesion have been examined by using a mutant of Escherichia coli K-12. To better understand the adhesion kinetics of bacteria in the mid-exponential and stationary growth phases under flow conditions, deposition experiments were conducted in a well-controlled radial stagnation point flow (RSPF) system. Complementary cell characterization techniques were conducted in combination with the RSPF experiments to evaluate the hydrophobicity, electrophoretic mobility, size, and titratable surface charge of the cells in the two growth phases considered. It was observed that cells in stationary phase were notably more adhesive than those in mid-exponential phase. This behavior is attributed to the high degree of local charge heterogeneity on the outer membranes of stationary-phase cells, which results in decreased electrostatic repulsion between the cells and a quartz surface. The mid-exponential-phase cells, on the other hand, have a more uniform charge distribution on the outer membrane, resulting in greater electrostatic repulsion and, subsequently, less adhesion. Our results suggest that the macromolecules responsible for this phenomenon are outer membrane-bound proteins and lipopolysaccharide-associated functional groups.

摘要

利用大肠杆菌K-12的一个突变体,研究了细菌生长阶段和表面大分子的演变对细胞黏附的影响。为了更好地理解在流动条件下处于指数中期和稳定期的细菌的黏附动力学,在一个控制良好的径向驻点流(RSPF)系统中进行了沉积实验。结合RSPF实验,采用互补的细胞表征技术,以评估所考虑的两个生长阶段细胞的疏水性、电泳迁移率、大小和可滴定表面电荷。观察到稳定期的细胞比指数中期的细胞黏附性明显更强。这种行为归因于稳定期细胞外膜上高度的局部电荷异质性,这导致细胞与石英表面之间的静电排斥力降低。另一方面,指数中期的细胞在外膜上具有更均匀的电荷分布,导致更大的静电排斥力,进而黏附性更小。我们的结果表明,导致这种现象的大分子是外膜结合蛋白和脂多糖相关官能团。

相似文献

1
Influence of growth phase on adhesion kinetics of Escherichia coli D21g.
Appl Environ Microbiol. 2005 Jun;71(6):3093-9. doi: 10.1128/AEM.71.6.3093-3099.2005.
3
Role of Cell Surface Lipopolysaccharides in Escherichia coli K12 adhesion and transport.
Langmuir. 2004 Aug 31;20(18):7736-46. doi: 10.1021/la049511f.
5
Escherichia coli O8-antigen enhances biofilm formation under agitated conditions.
FEMS Microbiol Lett. 2015 Aug;362(15):fnv112. doi: 10.1093/femsle/fnv112. Epub 2015 Jul 17.
6
Role of solution chemistry and ion valence on the adhesion kinetics of groundwater and marine bacteria.
Langmuir. 2007 Jun 19;23(13):7162-9. doi: 10.1021/la0632833. Epub 2007 May 25.
8
The role of nutrient presence on the adhesion kinetics of Burkholderia cepacia G4g and ENV435g.
Colloids Surf B Biointerfaces. 2005 Nov 10;45(3-4):181-8. doi: 10.1016/j.colsurfb.2005.08.007. Epub 2005 Sep 29.
10
Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12.
J Appl Microbiol. 2006 Dec;101(6):1323-30. doi: 10.1111/j.1365-2672.2006.03033.x.

引用本文的文献

2
Disrupting Irreversible Bacterial Adhesion and Biofilm Formation with an Engineered Enzyme.
Appl Environ Microbiol. 2021 Jun 11;87(13):e0026521. doi: 10.1128/AEM.00265-21.
3
Biofouling Mitigation Approaches during Water Recovery from Fermented Broth via Forward Osmosis.
Membranes (Basel). 2020 Oct 27;10(11):307. doi: 10.3390/membranes10110307.
4
The Potential Virulence Factors of : Motility, Adherence, and Invasion.
Biomed Res Int. 2018 Feb 21;2018:3589135. doi: 10.1155/2018/3589135. eCollection 2018.
5
Control of corrosive bacterial community by bronopol in industrial water system.
3 Biotech. 2018 Jan;8(1):55. doi: 10.1007/s13205-017-1071-4. Epub 2018 Jan 5.
6
biofilm development in the presence of soil clay minerals and iron oxides.
NPJ Biofilms Microbiomes. 2017 Feb 9;3:4. doi: 10.1038/s41522-017-0013-6. eCollection 2017.
9
Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents.
Springerplus. 2015 Nov 4;4:672. doi: 10.1186/s40064-015-1476-7. eCollection 2015.
10
Population dynamics of a Salmonella lytic phage and its host: implications of the host bacterial growth rate in modelling.
PLoS One. 2014 Jul 22;9(7):e102507. doi: 10.1371/journal.pone.0102507. eCollection 2014.

本文引用的文献

1
Kinetics of Colloid Deposition onto Heterogeneously Charged Surfaces in Porous Media.
Environ Sci Technol. 1994 Jun 1;28(6):1164-71. doi: 10.1021/es00055a030.
2
Development of an Adhesion Assay and Characterization of an Adhesion-Deficient Mutant of Pseudomonas fluorescens.
Appl Environ Microbiol. 1990 Jan;56(1):112-9. doi: 10.1128/aem.56.1.112-119.1990.
3
Role of Cell Surface Lipopolysaccharides in Escherichia coli K12 adhesion and transport.
Langmuir. 2004 Aug 31;20(18):7736-46. doi: 10.1021/la049511f.
4
Bacterial adhesion to glass and metal-oxide surfaces.
Colloids Surf B Biointerfaces. 2004 Jul 15;36(2):81-90. doi: 10.1016/j.colsurfb.2004.05.006.
6
Bacterial adhesion and transport in porous media: role of the secondary energy minimum.
Environ Sci Technol. 2004 Mar 15;38(6):1777-85. doi: 10.1021/es034887l.
9
Molecular basis of bacterial outer membrane permeability revisited.
Microbiol Mol Biol Rev. 2003 Dec;67(4):593-656. doi: 10.1128/MMBR.67.4.593-656.2003.
10
Kinetics of particle deposition in the oblique impinging jet cell.
J Colloid Interface Sci. 2004 Jan 1;269(1):53-61. doi: 10.1016/j.jcis.2003.07.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验