Law Aaron M J, Aitken Michael D
Department of Environmental Sciences and Engineering, CB 7431, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, USA.
Appl Environ Microbiol. 2005 Jun;71(6):3137-43. doi: 10.1128/AEM.71.6.3137-3143.2005.
Bacterial chemotaxis may have a significant impact on the structure and function of bacterial communities. Quantification of chemotactic motion is necessary to identify chemoeffectors and to determine the bacterial transport parameters used in predictive models of chemotaxis. When the chemotactic bacteria consume the chemoeffector, the chemoeffector gradient to which the bacteria respond may be significantly perturbed by the consumption. Therefore, consumption of the chemoeffector can confound chemotaxis measurements if it is not accounted for. Current methods of quantifying chemotaxis use bacterial concentrations that are too high to preclude chemoeffector consumption or involve ill-defined conditions that make quantifying chemotaxis difficult. We developed a method of quantifying bacterial chemotaxis at low cell concentrations ( approximately 10(5) CFU/ml), so metabolism of the chemoeffector is minimized. The method facilitates quantification of bacterial-transport parameters by providing well-defined boundary conditions and can be used with volatile and semivolatile chemoeffectors.
细菌趋化性可能对细菌群落的结构和功能产生重大影响。量化趋化运动对于识别化学效应物以及确定趋化性预测模型中使用的细菌运输参数是必要的。当趋化细菌消耗化学效应物时,细菌所响应的化学效应物梯度可能会因消耗而受到显著干扰。因此,如果不加以考虑,化学效应物的消耗会混淆趋化性测量。目前量化趋化性的方法使用的细菌浓度过高,无法排除化学效应物的消耗,或者涉及定义不明确的条件,使得趋化性量化变得困难。我们开发了一种在低细胞浓度(约10⁵CFU/ml)下量化细菌趋化性的方法,从而使化学效应物的代谢最小化。该方法通过提供明确的边界条件促进了细菌运输参数的量化,并且可用于挥发性和半挥发性化学效应物。