Department of Chemical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Biotechnol Bioeng. 1991 Mar 25;37(7):647-60. doi: 10.1002/bit.260370707.
Bacterial chemotaxis, the directed movement of a cell population in response to a chemical gradient, plays a critical role in the distribution and dynamic interaction of bacterial populations in nonmixed systems. Therefore, in order to make reliable predictions about the migratory behavior of bacteria within the environment, a quantitative characterization of the chemotactic response in terms of intrinsic cell properties is needed.The design of the stopped-flow diffusion chamber (SFDC) provides a well-characterized chemical gradient and reliable method for measuring bacterial migration behavior. During flow through the chamber, a step change in chemical concentration is imposed on a uniform suspension of bacteria. Once flow is stopped, diffusion causes a transient chemical gradient to develop, and bacteria respond by forming a band of high cell density which travels toward higher concentrations of the attractant. Changes in bacterial spatial distributions observed through light scattering are recorded on photomicrographs during a 10-min period. Computer-aided image analysis converts absorbance of the photographic negatives to a digital representation of bacterial density profiles. A mathematical model (part II) is used to quantitatively characterize these observations in terms of intrinsic cell parameters: a chemotactic sensitivity coefficient, chi(0), from the aggregate cell density accumulated in the band and a random motility coefficient, mu, from population dispersion in the absence of a chemical gradient.Using the SFDC assay and an individual-cell-based mathematical model, we successfully determined values for both of these population parameters for Escherichia coli K12 responding to fucose. The values obtained were mu = 1.1 +/- 0. 4 x 10(-5) cm(2)/s and chi(o) = 8 +/- 3 +/- 10(-5) cm(2)/s. We have demonstrated a method capable of determining these parameter values from the now validated mathematical model which will be useful for predicting bacterial migration in application systems.
细菌的趋化性是指细胞群体在化学梯度的作用下定向运动,它在非混合系统中细菌种群的分布和动态相互作用中起着关键作用。因此,为了对环境中细菌的迁移行为做出可靠的预测,需要从内在细胞特性的角度对趋化反应进行定量描述。
停流扩散室 (SFDC) 的设计提供了一个具有良好特征的化学梯度和可靠的测量细菌迁移行为的方法。在通过腔室流动时,在均匀的细菌悬浮液中施加化学浓度的阶跃变化。一旦停止流动,扩散会导致瞬态化学梯度的发展,细菌会通过形成高细胞密度带来做出反应,该带会向吸引剂的高浓度处移动。在 10 分钟的时间内,通过光散射观察到细菌空间分布的变化,并在照片上记录下来。计算机辅助图像分析将负片的吸光度转换为细菌密度分布的数字表示。数学模型(第二部分)用于根据内在细胞参数对这些观察结果进行定量描述:从带中积累的聚集细胞密度得出的趋化敏感性系数 chi(0),以及在没有化学梯度的情况下种群分散的随机运动系数 mu。
使用 SFDC 测定法和基于单细胞的数学模型,我们成功地确定了大肠杆菌 K12 对果糖反应的这两个种群参数的值。得到的值为 mu = 1.1 +/- 0.4 x 10(-5) cm(2)/s 和 chi(o) = 8 +/- 3 +/- 10(-5) cm(2)/s。我们已经证明了一种能够从现在经过验证的数学模型中确定这些参数值的方法,该方法将有助于预测应用系统中细菌的迁移。