Stepanyants Armen, Chklovskii Dmitri B
Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 110 Forsyth Street, Boston, MA 02115, USA.
Trends Neurosci. 2005 Jul;28(7):387-94. doi: 10.1016/j.tins.2005.05.006.
The advent of high-quality 3D reconstructions of neuronal arbors has revived the hope of inferring synaptic connectivity from the geometric shapes of axons and dendrites, or 'neurogeometry'. A quantitative description of connectivity must be built on a sound theoretical framework. Here, we review recent developments in neurogeometry that can provide such a framework. We base the geometric description of connectivity on the concept of a 'potential synapse'--the close apposition between axons and dendrites necessary to form an actual synapse. In addition to describing potential synaptic connectivity in neuronal circuits, neurogeometry provides insight into basic features of functional connectivity, such as specificity and plasticity.
高质量的神经元树突三维重建技术的出现,重新燃起了人们从轴突和树突的几何形状,即“神经几何学”推断突触连接性的希望。对连接性的定量描述必须建立在坚实的理论框架之上。在此,我们回顾神经几何学领域的最新进展,这些进展能够提供这样一个框架。我们基于“潜在突触”的概念对连接性进行几何描述,“潜在突触”是形成实际突触所必需的轴突与树突之间的紧密邻接。除了描述神经元回路中的潜在突触连接性,神经几何学还为功能连接性的基本特征,如特异性和可塑性,提供了深入见解。