Slangewal Katja, Aimon Sophie, Capelle Maxim Q, Kämpf Florian, Naumann Heike, Baier Herwig, Slanchev Krasimir, Bahl Armin
bioRxiv. 2025 Aug 12:2025.08.12.669772. doi: 10.1101/2025.08.12.669772.
Animals continuously extract and evaluate diverse sensory information from the environment to guide behavior. Yet, how neural circuits integrate multiple, potentially conflicting, inputs during decision-making remains poorly understood. Here, we use larval zebrafish to address this question, leveraging their robust optomotor response to coherent random dot motion and phototaxis towards light. We demonstrate that animals employ an additive behavioral algorithm of three visual features: motion coherence, luminance level, and changes in luminance. Using brain-wide two-photon imaging, we identify the loci of these computations, with the anterior hindbrain emerging as a multifeature sensory integration hub. Through single-cell neurotransmitter and morphological analyses of functionally identified neurons, we characterize potential connections within and across computational nodes. These experiments reveal three parallel and converging pathways, matching our behavioral results. Our study provides a mechanistic brain-wide account of how a vertebrate brain integrates multiple features to drive sensorimotor decisions, bridging the algorithmic bases of behavior and its neural implementation.
动物不断从环境中提取并评估各种感官信息以指导行为。然而,神经回路在决策过程中如何整合多个潜在冲突的输入仍知之甚少。在此,我们利用幼体斑马鱼对相干随机点运动的稳健视动反应和对光的趋光性来解决这个问题。我们证明,动物采用了一种由运动连贯性、亮度水平和亮度变化这三种视觉特征组成的加法行为算法。通过全脑双光子成像,我们确定了这些计算的位点,前脑后部成为一个多特征感觉整合中心。通过对功能鉴定神经元的单细胞神经递质和形态分析,我们描绘了计算节点内部和之间的潜在连接。这些实验揭示了三条平行且汇聚的通路,与我们的行为结果相符。我们的研究提供了一个全脑机制性解释,说明脊椎动物大脑如何整合多个特征以驱动感觉运动决策,弥合了行为的算法基础及其神经实现之间的差距。