Arampatzis Adamantios, Morey-Klapsing Gaspar, Brüggemann Gert-Peter
Institute for Biomechanics and Orthopaedics, German Sport University Cologne, Carl-Diem-Weg 6, 50933 Cologne, Germany.
J Electromyogr Kinesiol. 2005 Oct;15(5):507-15. doi: 10.1016/j.jelekin.2004.12.002. Epub 2005 Feb 19.
The purpose of this study was to examine two hypotheses: (a) mat hardness affects foot motion during landing; (b) the influence of a surface stabilising interface integrated in a mat on foot motion is detectable. Two studies were carried out: In the first one, six female gymnasts performed barefoot landings from different falling heights onto three mats having different hardness. In the second study, a stabilising mechanism was integrated in the surface of three new mats with different hardness. Three high speed video cameras (250Hz) captured the motion of the left leg and foot. These were modelled by means of a four rigid body system. The maximal eversion at the ankle joint was not influenced by the different mats (hard: 4.6 degrees +/-1.9 to 9.3 degrees +/-3.4, medium: 3.1 degrees +/-2.7 to 7.4 degrees +/-3.5, soft: 4.8 degrees +/-2.1 to 8.4 degrees +/-3.5). The soft mat without the stabilised surface showed higher eversion values (p<0.05) between forefoot and rearfoot (medial joint: hard: 5.1 degrees +/-3.2 to 7.3 degrees +/-3.3, medium: 6.9 degrees +/-3.1 to 7.5 degrees +/-2.9, soft: 12.7 degrees +/-4.1 to 13.4 degrees +/-3.3; lateral joint: hard: 8.5 degrees +/-3.1 to 9.7 degrees +/-1.1, medium: 9.5 degrees +/-2.6 to 11.2 degrees +/-3.3, soft: 12.1 degrees +/-2.3 to 15.7 degrees +/-3.3). For the mats with the surface stabilising interface, the different hardness did not cause any significant differences in maximal eversion values at the medial (hard: 1.5 degrees +/-3.3 to 5.5 degrees +/-4.5, medium: 1.3 degrees +/-3.5 to 5.1 degrees +/-3.6, soft: 0.7 degrees +/-4.9 to 5.4 degrees +/-4.2) nor at the lateral (hard: 11.3 degrees +/-4.2 to 17.3 degrees +/-4.2, medium: 12.3 degrees +/-4.8 to 17.1 degrees +/-3.7, soft: 11.5 degrees +/-4.6 to 17.1 degrees +/-4.3) forefoot joints. The structure of the mat and the consequent deformation hollow did not influence the kinematics of the ankle joint during landings, but it influenced the motion at the medial and the lateral forefoot joints. By means of a stabilised surface, it is possible to reduce the influence of mat deformation on the maximal eversion between forefoot and rearfoot.
(a)垫子硬度会影响着陆时的足部运动;(b)垫子中集成的表面稳定界面 对足部运动的影响是可检测到的。进行了两项研究:在第一项研究中,六名女性体操运动员从不同的下落高度赤脚落在三种硬度不同的垫子上。在第二项研究中,在三种不同硬度的新垫子表面集成了一种稳定机制。三台高速摄像机(250Hz)捕捉左腿和足部的运动。这些通过一个四刚体系统进行建模。踝关节处的最大外翻不受不同垫子的影响(硬垫子:4.6度±1.9至9.3度±3.4,中等硬度垫子:3.1度±2.7至7.4度±3.5,软垫子:4.8度±2.1至8.4度±3.5)。没有稳定表面的软垫子在前足和后足之间显示出更高的外翻值(p<0.05)(内侧关节:硬垫子:5.1度±3.2至7.3度±3.3,中等硬度垫子:6.9度±3.1至7.5度±2.9,软垫子:12.7度±4.1至13.4度±3.3;外侧关节:硬垫子:8.5度±3.1至9.7度±1.1,中等硬度垫子:9.5度±2.6至11.2度±3.3,软垫子:12.1度±2.3至15.7度±3.3)。对于带有表面稳定界面的垫子,不同硬度在内侧(硬垫子:1.5度±3.3至5.5度±4.5,中等硬度垫子:1.3度±3.5至5.1度±3.6,软垫子:0.7度±4.9至5.4度±4.2)和外侧(硬垫子:11.3度±4.2至17.3度±4.2,中等硬度垫子:12.3度±4.8至17.1度±3.7,软垫子:11.5度±4.6至17.1度±4.3)前足关节处的最大外翻值上未引起任何显著差异。垫子的结构以及随之产生的变形凹陷在着陆过程中并未影响踝关节的运动学,但它影响了前足内侧和外侧关节的运动。通过稳定表面,可以减少垫子变形对前足和后足之间最大外翻的影响。