Shi D, Yeung D S, Gao J
School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Neural Netw. 2005 Sep;18(7):951-7. doi: 10.1016/j.neunet.2005.02.006.
Conventionally, a radial basis function (RBF) network is constructed by obtaining cluster centers of basis function by maximum likelihood learning. This paper proposes a novel learning algorithm for the construction of radial basis function using sensitivity analysis. In training, the number of hidden neurons and the centers of their radial basis functions are determined by the maximization of the output's sensitivity to the training data. In classification, the minimal number of such hidden neurons with the maximal sensitivity will be the most generalizable to unknown data. Our experimental results show that our proposed sensitivity-based RBF classifier outperforms the conventional RBFs and is as accurate as support vector machine (SVM). Hence, sensitivity analysis is expected to be a new alternative way to the construction of RBF networks.
传统上,径向基函数(RBF)网络是通过最大似然学习获得基函数的聚类中心来构建的。本文提出了一种使用灵敏度分析来构建径向基函数的新颖学习算法。在训练中,隐藏神经元的数量及其径向基函数的中心由输出对训练数据的灵敏度最大化来确定。在分类中,具有最大灵敏度的此类隐藏神经元的最小数量将对未知数据具有最强的泛化能力。我们的实验结果表明,我们提出的基于灵敏度的RBF分类器优于传统的RBF,并且与支持向量机(SVM)一样准确。因此,灵敏度分析有望成为构建RBF网络的一种新的替代方法。