Suppr超能文献

应用于径向基函数网络构建的敏感性分析。

Sensitivity analysis applied to the construction of radial basis function networks.

作者信息

Shi D, Yeung D S, Gao J

机构信息

School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore.

出版信息

Neural Netw. 2005 Sep;18(7):951-7. doi: 10.1016/j.neunet.2005.02.006.

Abstract

Conventionally, a radial basis function (RBF) network is constructed by obtaining cluster centers of basis function by maximum likelihood learning. This paper proposes a novel learning algorithm for the construction of radial basis function using sensitivity analysis. In training, the number of hidden neurons and the centers of their radial basis functions are determined by the maximization of the output's sensitivity to the training data. In classification, the minimal number of such hidden neurons with the maximal sensitivity will be the most generalizable to unknown data. Our experimental results show that our proposed sensitivity-based RBF classifier outperforms the conventional RBFs and is as accurate as support vector machine (SVM). Hence, sensitivity analysis is expected to be a new alternative way to the construction of RBF networks.

摘要

传统上,径向基函数(RBF)网络是通过最大似然学习获得基函数的聚类中心来构建的。本文提出了一种使用灵敏度分析来构建径向基函数的新颖学习算法。在训练中,隐藏神经元的数量及其径向基函数的中心由输出对训练数据的灵敏度最大化来确定。在分类中,具有最大灵敏度的此类隐藏神经元的最小数量将对未知数据具有最强的泛化能力。我们的实验结果表明,我们提出的基于灵敏度的RBF分类器优于传统的RBF,并且与支持向量机(SVM)一样准确。因此,灵敏度分析有望成为构建RBF网络的一种新的替代方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验