Srinivasan Balaji S, Caberoy Nora B, Suen Garret, Taylor Rion G, Shah Radhika, Tengra Farah, Goldman Barry S, Garza Anthony G, Welch Roy D
Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
Nat Biotechnol. 2005 Jun;23(6):691-8. doi: 10.1038/nbt1098.
Accurate determination of functional interactions among proteins at the genome level remains a challenge for genomic research. Here we introduce a genome-scale approach to functional protein annotation--phylogenomic mapping--that requires only sequence data, can be applied equally well to both finished and unfinished genomes, and can be extended beyond single genomes to annotate multiple genomes simultaneously. We have developed and applied it to more than 200 sequenced bacterial genomes. Proteins with similar evolutionary histories were grouped together, placed on a three dimensional map and visualized as a topographical landscape. The resulting phylogenomic maps display thousands of proteins clustered in mountains on the basis of coinheritance, a strong indicator of shared function. In addition to systematic computational validation, we have experimentally confirmed the ability of phylogenomic maps to predict both mutant phenotype and gene function in the delta proteobacterium Myxococcus xanthus.
在基因组水平上准确确定蛋白质之间的功能相互作用仍然是基因组研究面临的一项挑战。在此,我们引入了一种用于功能性蛋白质注释的基因组规模方法——系统发育基因组图谱绘制,该方法仅需序列数据,同样适用于已完成和未完成的基因组,并且可以扩展到单个基因组之外以同时注释多个基因组。我们已经开发了该方法并将其应用于200多个已测序的细菌基因组。具有相似进化历史的蛋白质被归为一组,放置在三维图谱上,并可视化为地形景观。由此产生的系统发育基因组图谱显示,数千种蛋白质基于共同遗传聚集在“山脉”中,这是功能共享的有力指标。除了系统的计算验证外,我们还通过实验证实了系统发育基因组图谱在预测δ变形菌黄黏球菌突变体表型和基因功能方面的能力。