Gomes M G M, Margheri A, Medley G F, Rebelo C
Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal.
J Math Biol. 2005 Oct;51(4):414-30. doi: 10.1007/s00285-005-0331-9. Epub 2005 Jun 6.
In this paper we analyze the dynamics of two families of epidemiological models which correspond to transitions from the SIR (susceptible-infectious-resistant) to the SIS (susceptible-infectious-susceptible) frameworks. In these models we assume that the force of infection is a nonlinear function of density of infectious individuals, I. Conditions for the existence of backwards bifurcations, oscillations and Bogdanov-Takens points are given.
在本文中,我们分析了两类流行病学模型的动力学特性,这两类模型对应于从SIR(易感-感染-康复)框架到SIS(易感-感染-易感)框架的转变。在这些模型中,我们假设感染率是感染个体密度I的非线性函数。给出了存在反向分岔、振荡和 Bogdanov-Takens 点的条件。