Kim Seon-Young, Volsky David J
Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, Columbia University, New York, NY 10019, USA.
BMC Bioinformatics. 2005 Jun 8;6:144. doi: 10.1186/1471-2105-6-144.
Gene set enrichment analysis (GSEA) is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. GSEA is especially useful when gene expression changes in a given microarray data set is minimal or moderate.
We developed a modified gene set enrichment analysis method based on a parametric statistical analysis model. Compared with GSEA, the parametric analysis of gene set enrichment (PAGE) detected a larger number of significantly altered gene sets and their p-values were lower than the corresponding p-values calculated by GSEA. Because PAGE uses normal distribution for statistical inference, it requires less computation than GSEA, which needs repeated computation of the permutated data set. PAGE was able to detect significantly changed gene sets from microarray data irrespective of different Affymetrix probe level analysis methods or different microarray platforms. Comparison of two aged muscle microarray data sets at gene set level using PAGE revealed common biological themes better than comparison at individual gene level.
PAGE was statistically more sensitive and required much less computational effort than GSEA, it could identify significantly changed biological themes from microarray data irrespective of analysis methods or microarray platforms, and it was useful in comparison of multiple microarray data sets. We offer PAGE as a useful microarray analysis method.
基因集富集分析(GSEA)是一种微阵列数据分析方法,它使用预定义的基因集和基因排名来识别微阵列数据集中显著的生物学变化。当给定微阵列数据集中的基因表达变化最小或适中时,GSEA特别有用。
我们基于参数统计分析模型开发了一种改进的基因集富集分析方法。与GSEA相比,基因集富集的参数分析(PAGE)检测到大量显著改变的基因集,并且其p值低于GSEA计算的相应p值。由于PAGE使用正态分布进行统计推断,它比需要对排列数据集进行重复计算的GSEA计算量更少。无论使用不同的Affymetrix探针水平分析方法还是不同的微阵列平台,PAGE都能够从微阵列数据中检测到显著变化的基因集。使用PAGE在基因集水平上比较两个老年肌肉微阵列数据集,比在单个基因水平上的比较能更好地揭示共同的生物学主题。
PAGE在统计学上比GSEA更敏感,计算量也少得多,它能够从微阵列数据中识别出显著变化的生物学主题,而不考虑分析方法或微阵列平台,并且在比较多个微阵列数据集时很有用。我们将PAGE作为一种有用的微阵列分析方法提供。