Guilmineau Camille, Tremblay-Franco Marie, Vialaneix Nathalie, Servien Rémi
INRAE, University of Montpellier, LBE, 102 Avenue des Etangs, 11100, Narbonne, France.
INRAE, Université de Toulouse, ENVT, Toxalim, 31027, Toulouse, France.
BMC Bioinformatics. 2025 Apr 16;26(1):105. doi: 10.1186/s12859-025-06118-z.
Metabolomics describes the metabolic profile of an organism at a given time by the concentrations of its constituent metabolites. When studied over time, metabolite concentrations can help understand the dynamical evolution of a biological process. However, metabolites are involved into sequences of chemical reactions, called metabolic pathways, related to a given biological function. Accounting for these pathways into statistical methods for metabolomic data is thus a relevant way to directly express results in terms of biological functions and to increase their interpretability.
We propose a new method, phoenics, to perform differential analysis for longitudinal metabolomic data at the pathway level. In short, phoenics proceeds in two steps: First, the matrix of metabolite quantifications is transformed by a dimension reduction approach accounting for pathway information. Then, a mixed linear model is fitted on the transformed data.
This method was applied to semi-synthetic NMR data and two real NMR datasets assessing the effects of antibiotics and irritable bowel syndrome on feces. Results showed that phoenics properly controls the Type I error rate and has a better ability to detect differential metabolic pathways and to extract new impacted biological functions than alternative methods. The method is implemented in the R package phoenics available on CRAN.
代谢组学通过生物体组成代谢物的浓度描述其在给定时间的代谢概况。随着时间的推移进行研究时,代谢物浓度有助于理解生物过程的动态演变。然而,代谢物参与到与特定生物学功能相关的化学反应序列中,即所谓的代谢途径。因此,将这些途径纳入代谢组学数据的统计方法中,是一种直接根据生物学功能表达结果并提高其可解释性的相关方法。
我们提出了一种新方法——phoenics,用于在途径水平上对纵向代谢组学数据进行差异分析。简而言之,phoenics分两步进行:首先,通过考虑途径信息的降维方法对代谢物定量矩阵进行转换。然后,对转换后的数据拟合一个混合线性模型。
该方法应用于半合成核磁共振(NMR)数据以及两个评估抗生素和肠易激综合征对粪便影响的真实NMR数据集。结果表明,phoenics能正确控制I型错误率,并且与其他方法相比,具有更好的检测差异代谢途径和提取新的受影响生物学功能的能力。该方法在CRAN上可用的R包phoenics中实现。