Suppr超能文献

使用分层广义线性模型对局部项目依赖性进行建模。

Modeling local item dependence with the hierarchical generalized linear model.

作者信息

Jiao Hong, Wang Shudong, Kamata Akihito

机构信息

Psychometrics and Research Services, Harcourt Assessment, Inc., 19500 Bulverde Road, San Antonio, TX 78259, USA.

出版信息

J Appl Meas. 2005;6(3):311-21.

Abstract

Local item dependence (LID) can emerge when the test items are nested within common stimuli or item groups. This study proposes a three-level hierarchical generalized linear model (HGLM) to model LID when LID is due to such contextual effects. The proposed three-level HGLM was examined by analyzing simulated data sets and was compared with the Rasch-equivalent two-level HGLM that ignores such a nested structure of test items. The results demonstrated that the proposed model could capture LID and estimate its magnitude. Also, the two-level HGLM resulted in larger mean absolute differences between the true and the estimated item difficulties than those from the proposed three-level HGLM. Furthermore, it was demonstrated that the proposed three-level HGLM estimated the ability distribution variance unaffected by the LID magnitude, while the two-level HGLM with no LID consideration increasingly underestimated the ability variance as the LID magnitude increased.

摘要

当测试项目嵌套在共同刺激或项目组中时,可能会出现局部项目依赖(LID)。本研究提出了一种三级分层广义线性模型(HGLM),用于在LID是由这种情境效应导致时对LID进行建模。通过分析模拟数据集对所提出的三级HGLM进行了检验,并将其与忽略测试项目这种嵌套结构的Rasch等效二级HGLM进行了比较。结果表明,所提出的模型能够捕捉LID并估计其大小。此外,二级HGLM在真实和估计的项目难度之间产生的平均绝对差异比所提出的三级HGLM更大。此外,还证明了所提出的三级HGLM估计的能力分布方差不受LID大小的影响,而不考虑LID的二级HGLM随着LID大小的增加越来越低估能力方差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验