Suppr超能文献

测验题效应间相关性的推断:一种潜在变量选择方法。

Inference of Correlations Among Testlet Effects: A Latent Variable Selection Method.

作者信息

Xu Xin, Guo Jinxin, Xin Tao

机构信息

College of Science, Minzu University of China, Beijing, China.

Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Beijing, China.

出版信息

Appl Psychol Meas. 2024 Dec 26:01466216241310598. doi: 10.1177/01466216241310598.

Abstract

In psychological and educational measurement, a testlet-based test is a common and popular format, especially in some large-scale assessments. In modeling testlet effects, a standard bifactor model, as a common strategy, assumes different testlet effects and the main effect to be fully independently distributed. However, it is difficult to establish perfectly independent clusters as this assumption. To address this issue, correlations among testlets could be taken into account in fitting data. Moreover, one may desire to maintain a good practical interpretation of the sparse loading matrix. In this paper, we propose data-driven learning of significant correlations in the covariance matrix through a latent variable selection method. Under the proposed method, a regularization is performed on the weak correlations for the extended bifactor model. Further, a stochastic expectation maximization algorithm is employed for efficient computation. Results from simulation studies show the consistency of the proposed method in selecting significant correlations. Empirical data from the 2015 Program for International Student Assessment is analyzed using the proposed method as an example.

摘要

在心理和教育测量中,基于测验题组的测试是一种常见且流行的形式,尤其是在一些大规模评估中。在对测验题组效应进行建模时,作为一种常见策略,标准双因素模型假设不同的测验题组效应和主效应是完全独立分布的。然而,按照这个假设很难建立完全独立的聚类。为了解决这个问题,在拟合数据时可以考虑测验题组之间的相关性。此外,人们可能希望对稀疏载荷矩阵保持良好的实际解释。在本文中,我们提出通过一种潜在变量选择方法对协方差矩阵中的显著相关性进行数据驱动学习。在所提出的方法下,对扩展双因素模型的弱相关性进行正则化。此外,采用随机期望最大化算法进行高效计算。模拟研究结果表明了所提出方法在选择显著相关性方面的一致性。以2015年国际学生评估项目的实证数据为例,使用所提出的方法进行了分析。

相似文献

3
Diagnostic Classification Models for Testlets: Methods and Theory.测验分量表的诊断分类模型:方法与理论。
Psychometrika. 2024 Sep;89(3):851-876. doi: 10.1007/s11336-024-09962-9. Epub 2024 Mar 26.
4
Testlet-Based Multidimensional Adaptive Testing.基于测试集的多维自适应测试。
Front Psychol. 2016 Nov 18;7:1758. doi: 10.3389/fpsyg.2016.01758. eCollection 2016.
9
Modeling Rapid Guessing Behaviors in Computer-Based Testlet Items.基于计算机的分块试题中快速猜测行为的建模
Appl Psychol Meas. 2023 Jan;47(1):19-33. doi: 10.1177/01466216221125177. Epub 2022 Sep 9.

本文引用的文献

3
Computerized adaptive testing for testlet-based innovative items.基于测试单元的创新项目的计算机化自适应测试。
Br J Math Stat Psychol. 2022 Feb;75(1):136-157. doi: 10.1111/bmsp.12252. Epub 2021 Aug 30.
4
Empirical Underidentification with the Bifactor Model: A Case Study.双因素模型下的经验性识别不足:一个案例研究。
Educ Psychol Meas. 2018 Oct;78(5):717-736. doi: 10.1177/0013164417719947. Epub 2017 Jul 22.
5
The Bayesian Multilevel Trifactor Item Response Theory Model.贝叶斯多级三因素项目反应理论模型
Educ Psychol Meas. 2019 Jun;79(3):462-494. doi: 10.1177/0013164418806694. Epub 2018 Nov 17.
7
A General Approach for Fitting Pure Exploratory Bifactor Models.一种拟合纯探索性双因素模型的通用方法。
Multivariate Behav Res. 2019 Jan-Feb;54(1):15-30. doi: 10.1080/00273171.2018.1484339. Epub 2018 Aug 30.
10
Exploratory Bi-factor Analysis: The Oblique Case.探索性双因素分析:斜交情况。
Psychometrika. 2012 Jul;77(3):442-54. doi: 10.1007/s11336-012-9269-1. Epub 2012 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验