Raikwar Nandita S, Bowen Rosario F, Deeg Mark A
Department of Medicine, Indiana University School of Medicine and the Department of Veterans Affairs, Richard L. Roudebush VAMC, Indianapolis, IN 46202, USA.
Biochem J. 2005 Oct 15;391(Pt 2):285-9. doi: 10.1042/BJ20050656.
Glycosylphosphatidylinositol (GPI)-specific phospholipase D (GPI-PLD) specifically cleaves GPIs. This phospholipase D is a secreted protein consisting of two domains: an N-terminal catalytic domain and a predicted C-terminal b-propeller. Although the biochemical properties of GPI-PLD have been extensively studied, its catalytic site has not been identified. We hypothesized that a histidine residue(s) may play a critical role in the catalytic activity of GPI-PLD, based on the observations that (i) Zn2+, which utilizes histidine residues for binding, is required for GPI-PLD catalytic activity, (ii) a phosphohistidine intermediate is involved in phospholipase D hydrolysis of phosphatidylcholine, (iii) computer modelling suggests a catalytic site containing histidine residues, and (iv) our observation that diethyl pyrocarbonate, which modifies histidine residues, inhibits GPI-PLD catalytic activity. Individual mutation of the ten histidine residues to asparagine in the catalytic domain of murine GPI-PLD resulted in three general phenotypes: not secreted or retained (His56 or His88), secreted with catalytic activity (His34, His81, His98 or His219) and secreted without catalytic activity (His29, His125, His133 or His158). Changing His133 but not His29, His125 or His158 to Cys resulted in a mutant that retained catalytic activity, suggesting that at least His133 is involved in Zn2+ binding. His133 and His158 also retained the biochemical properties of wild-type GPI-PLD including trypsin cleavage pattern and phosphorylation by protein kinase A. Hence, His29, His125, His133 and His158 are required for GPI-PLD catalytic activity.
糖基磷脂酰肌醇(GPI)特异性磷脂酶D(GPI-PLD)可特异性切割GPI。这种磷脂酶D是一种分泌蛋白,由两个结构域组成:N端催化结构域和预测的C端β-螺旋桨结构域。尽管已对GPI-PLD的生化特性进行了广泛研究,但其催化位点尚未确定。基于以下观察结果,我们推测组氨酸残基可能在GPI-PLD的催化活性中起关键作用:(i)GPI-PLD催化活性需要利用组氨酸残基进行结合的Zn2+;(ii)磷脂酰胆碱的磷脂酶D水解涉及磷酸组氨酸中间体;(iii)计算机建模表明存在一个包含组氨酸残基的催化位点;(iv)我们观察到修饰组氨酸残基的焦碳酸二乙酯会抑制GPI-PLD的催化活性。将小鼠GPI-PLD催化结构域中的10个组氨酸残基逐个突变为天冬酰胺,产生了三种一般表型:未分泌或滞留(His56或His88)、具有催化活性地分泌(His34、His81、His98或His219)以及无催化活性地分泌(His29、His125、His133或His158)。将His133而非His29、His125或His158突变为半胱氨酸,产生了一个保留催化活性的突变体,这表明至少His133参与Zn2+结合。His133和His158还保留了野生型GPI-PLD的生化特性,包括胰蛋白酶切割模式和蛋白激酶A的磷酸化。因此,His29、His125、His133和His158是GPI-PLD催化活性所必需的。