Suppr超能文献

酿酒酵母中由肌醇1,4,5-三磷酸3-激酶活性引发的新型肌醇多磷酸代谢途径的分子定义。

Molecular definition of a novel inositol polyphosphate metabolic pathway initiated by inositol 1,4,5-trisphosphate 3-kinase activity in Saccharomyces cerevisiae.

作者信息

Seeds Andrew M, Bastidas Robert J, York John D

机构信息

Department of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

J Biol Chem. 2005 Jul 29;280(30):27654-61. doi: 10.1074/jbc.M505089200. Epub 2005 Jun 8.

Abstract

The production of inositol polyphosphate (IPs) and pyrophosphates (PP-IPs) from inositol 1,4,5-trisphosphate (I(1,4,5)P3) requires the 6-/3-/5-kinase activity of Ipk2 (also known as Arg82 and inositol polyphosphate multikinase). Here, we probed the distinct roles for I(1,4,5)P3 6- versus 3-kinase activities in IP metabolism and cellular functions reported for Ipk2. Expression of either I(1,4,5)P3 6- or 3-kinase activity rescued growth of ipk2-deficient yeast at high temperatures, whereas only 6-kinase activity enabled growth on ornithine as the sole nitrogen source. Analysis of IP metabolism revealed that the 3-kinase initiated the synthesis of novel pathway consisting of over eleven IPs and PP-IPs. This pathway was present in wild-type and ipk2 null cells, albeit at low levels as compared with inositol hexakisphosphate synthesis. The primary route of synthesis was: I(1,4,5)P3 --> I(1,3,4,5)P4 --> I(1,2,3,4,5)P5 --> PP-IP4 --> PP2-IP3 and required Kcs1 (or possibly Ipk2), Ipk1, a novel inositol pyrophosphate synthase, and then Kcs1 again, respectively. Mutation of kcs1 ablated this pathway in ipk2 null cells and overexpression of Kcs1 in ipk2 mutant cells phenocopied IP3K expression, confirming it harbors a novel 3-kinase activity. Our work provides a revised genetic map of IP metabolism in yeast and evidence for dosage compensation between IPs and PP-IPs downstream of I(1,4,5)P3 in the regulation of nucleocytoplasmic processes.

摘要

从肌醇 1,4,5-三磷酸(I(1,4,5)P3)生成肌醇多磷酸(IPs)和焦磷酸(PP-IPs)需要 Ipk2(也称为 Arg82 和肌醇多磷酸多激酶)的 6-/3-/5-激酶活性。在此,我们探究了 I(1,4,5)P3 的 6-激酶与 3-激酶活性在 Ipk2 所报道的 IP 代谢和细胞功能中的不同作用。I(1,4,5)P3 的 6-激酶或 3-激酶活性的表达均能挽救 ipk2 缺陷型酵母在高温下的生长,而只有 6-激酶活性能使酵母以鸟氨酸作为唯一氮源生长。对 IP 代谢的分析表明,3-激酶启动了一条由超过十一种 IP 和 PP-IP 组成的新途径的合成。该途径存在于野生型和 ipk2 缺失细胞中,尽管与肌醇六磷酸的合成相比水平较低。合成的主要途径为:I(1,4,5)P3 --> I(1,3,4,5)P4 --> I(1,2,3,4,5)P5 --> PP-IP4 --> PP2-IP3,分别需要 Kcs1(或可能是 Ipk2)、Ipk1、一种新型肌醇焦磷酸合酶,然后再次需要 Kcs1。kcs1 的突变消除了 ipk2 缺失细胞中的这条途径,而在 ipk2 突变细胞中过表达 Kcs1 模拟了 IP3K 的表达,证实其具有一种新型 3-激酶活性。我们的工作提供了酵母中 IP 代谢的修订遗传图谱,并证明了在调节核质过程中,I(1,4,5)P3 下游的 IP 和 PP-IP 之间存在剂量补偿。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验