Ohmae Eiji, Fukumizu Yukari, Iwakura Masahiro, Gekko Kunihiko
Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526.
J Biochem. 2005 May;137(5):643-52. doi: 10.1093/jb/mvi079.
Methionine-42, distal to the active site of Escherichia coli dihydrofolate reductase, was substituted by site-directed mutagenesis with 14 amino acids (Ala, Cys, Glu, Gln, Gly, His, Ile, Leu, Pro, Ser, Thr, Trp, Tyr, and Val) to elucidate its role in the stability and function of this enzyme. Far-ultraviolet circular dichroism spectra of these mutants showed a distinctive negative peak at around 230 nm beside 220 nm, depending on the hydrophobicity of the amino acids introduced. The fluorescence intensity also increased in an order similar to that of the amino acids. These spectroscopic data suggest that the mutations do not affect the secondary structure, but strongly perturb the exciton coupling between Trp47 and Trp74. The free energy of urea unfolding, deltaG(o)u, increased with increases in the side-chain hydrophobicity in the range 2.96-6.40 kcal x mol(-1), which includes the value for the wild-type enzyme (6.08 kcal x mol(-1)). The steady-state kinetic parameters, Km and kcat, also increased with increases in the side-chain hydrophobicity, with the M42W mutant showing the largest increases in Km (35-fold) and kcat (4.3-fold) compared with the wild-type enzyme. These results demonstrate that site 42 distal to the active site plays an important role in the stability and function of this enzyme, and that the main effect of the mutations is to modify of hydrophobic interactions with the residues surrounding this position.
在大肠杆菌二氢叶酸还原酶活性位点远端的甲硫氨酸-42,通过定点诱变被14种氨基酸(丙氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、组氨酸、异亮氨酸、亮氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸和缬氨酸)取代,以阐明其在该酶稳定性和功能中的作用。这些突变体的远紫外圆二色光谱在220nm附近的230nm左右显示出一个独特的负峰,这取决于引入氨基酸的疏水性。荧光强度也以与氨基酸相似的顺序增加。这些光谱数据表明,这些突变不影响二级结构,但强烈干扰了色氨酸47和色氨酸74之间的激子耦合。尿素展开的自由能ΔG(o)u随着侧链疏水性在2.96 - 6.40 kcal·mol⁻¹范围内的增加而增加,其中包括野生型酶的值(6.08 kcal·mol⁻¹)。稳态动力学参数Km和kcat也随着侧链疏水性的增加而增加,与野生型酶相比,M42W突变体的Km增加最大(35倍),kcat增加最大(4.3倍)。这些结果表明,活性位点远端的42位点在该酶的稳定性和功能中起重要作用,并且突变的主要作用是改变与该位置周围残基的疏水相互作用。