University of Florida, Horticultural Sciences Department, Gainesville, FL 32611, USA.
J Bacteriol. 2010 Jan;192(2):475-82. doi: 10.1128/JB.01198-09. Epub 2009 Nov 6.
Tetrahydromonapterin is a major pterin in Escherichia coli and is hypothesized to be the cofactor for phenylalanine hydroxylase (PhhA) in Pseudomonas aeruginosa, but neither its biosynthetic origin nor its cofactor role has been clearly demonstrated. A comparative genomics analysis implicated the enigmatic folX and folM genes in tetrahydromonapterin synthesis via their phyletic distribution and chromosomal clustering patterns. folX encodes dihydroneopterin triphosphate epimerase, which interconverts dihydroneopterin triphosphate and dihydromonapterin triphosphate. folM encodes an unusual short-chain dehydrogenase/reductase known to have dihydrofolate and dihydrobiopterin reductase activity. The roles of FolX and FolM were tested experimentally first in E. coli, which lacks PhhA and in which the expression of P. aeruginosa PhhA plus the recycling enzyme pterin 4a-carbinolamine dehydratase, PhhB, rescues tyrosine auxotrophy. This rescue was abrogated by deleting folX or folM and restored by expressing the deleted gene from a plasmid. The folX deletion selectively eliminated tetrahydromonapterin production, which far exceeded folate production. Purified FolM showed high, NADPH-dependent dihydromonapterin reductase activity. These results were substantiated in P. aeruginosa by deleting tyrA (making PhhA the sole source of tyrosine) and folX. The DeltatyrA strain was, as expected, prototrophic for tyrosine, whereas the DeltatyrA DeltafolX strain was auxotrophic. As in E. coli, the folX deletant lacked tetrahydromonapterin. Collectively, these data establish that tetrahydromonapterin formation requires both FolX and FolM, that tetrahydromonapterin is the physiological cofactor for PhhA, and that tetrahydromonapterin can outrank folate as an end product of pterin biosynthesis.
四氢生物蝶呤是大肠杆菌中的主要蝶呤,据推测它是铜绿假单胞菌中苯丙氨酸羟化酶(PhhA)的辅因子,但它的生物合成来源及其辅因子作用都尚未明确。比较基因组学分析通过其系统发育分布和染色体聚类模式,暗示了神秘的 folX 和 folM 基因在四氢生物蝶呤合成中的作用。folX 编码二氢新蝶呤三磷酸表异构酶,可使二氢新蝶呤三磷酸和四氢生物蝶呤三磷酸相互转化。folM 编码一种不寻常的短链脱氢酶/还原酶,已知具有二氢叶酸和二氢生物蝶呤还原酶活性。首先在缺乏 PhhA 的大肠杆菌中进行了 FolX 和 FolM 的实验验证,在大肠杆菌中表达铜绿假单胞菌 PhhA 及其再循环酶蝶呤 4a-羟甲基胺脱水酶 PhhB 可挽救酪氨酸营养缺陷型。缺失 folX 或 folM 可消除这种拯救作用,而从质粒表达缺失基因可恢复拯救作用。folX 缺失选择性消除了四氢生物蝶呤的产生,其产量远远超过了叶酸的产量。纯化的 FolM 表现出高 NADPH 依赖性四氢生物蝶呤还原酶活性。通过在铜绿假单胞菌中缺失 tyrA(使 PhhA 成为酪氨酸的唯一来源)和 folX 验证了这些结果。正如预期的那样,DeltatyrA 菌株对酪氨酸呈原养型,而 DeltatyrA DeltafolX 菌株则是营养缺陷型。与大肠杆菌一样,folX 缺失突变体缺乏四氢生物蝶呤。总的来说,这些数据表明四氢生物蝶呤的形成需要 FolX 和 FolM,四氢生物蝶呤是 PhhA 的生理辅因子,并且四氢生物蝶呤可以胜过叶酸作为蝶呤生物合成的终产物。