Conaway M R, Waternaux C, Allred E, Bellinger D, Leviton A
Duke University Medical Center, Durham, NC 27710.
Stat Med. 1992 Apr;11(6):799-811. doi: 10.1002/sim.4780110610.
This paper presents an analysis of categorical variables subject to non-response. We incorporate the incomplete data into the analysis by modelling the distribution of the variables of interest and the non-response mechanism. We discuss issues of model selection and interpretation and the effect of discarding incomplete observations. In addition, we describe how to perform all of the computations with standard statistical software. We discuss the problem of incomplete categorical data within the context of a study of the effect of lead exposure on learning difficulties in children. In this study, many of the children are not observed on some of the variables of interest. It is particularly important in this study to incorporate the incomplete data, since there is evidence that non-response is related to the variables of interest. We reach different conclusions when we incorporate the incomplete data into the analysis than we reach when we discard the incomplete data. We also examine the sensitivity of our conclusions to the choice of a model for the non-response mechanism.
本文对存在无应答情况的分类变量进行了分析。我们通过对感兴趣变量的分布和无应答机制进行建模,将不完整数据纳入分析。我们讨论了模型选择和解释问题以及丢弃不完整观测值的影响。此外,我们描述了如何使用标准统计软件进行所有计算。我们在一项关于铅暴露对儿童学习困难影响的研究背景下讨论了不完整分类数据的问题。在这项研究中,许多儿童在一些感兴趣的变量上未被观测到。在这项研究中纳入不完整数据尤为重要,因为有证据表明无应答与感兴趣的变量相关。当我们将不完整数据纳入分析时,得出的结论与丢弃不完整数据时得出的结论不同。我们还检验了我们的结论对无应答机制模型选择的敏感性。