Suppr超能文献

经验丰富的骨科医生对股骨近端粗隆间骨折分类系统的可靠性

Reliability of classification systems for intertrochanteric fractures of the proximal femur in experienced orthopaedic surgeons.

作者信息

Jin Wen-Jie, Dai Li-Yang, Cui Yi-Min, Zhou Qing, Jiang Lei-Sheng, Lu Hua

机构信息

Xinhua Hospital, Shanghai Second Medical University, Orthopaedic Surgery, 1665 Kongjiang Road, Shanghai 200092, China.

出版信息

Injury. 2005 Jul;36(7):858-61. doi: 10.1016/j.injury.2005.02.005. Epub 2005 Apr 7.

Abstract

INTRODUCTION

The aim of this study was to determine the reliability of currently used classification systems for intertrochanteric fractures of the proximal femur, and to determine the reliability of these systems in experienced orthopaedic surgeons.

MATERIALS AND METHODS

Forty intertrochanteric fractures of the proximal femur were classified independently by five experienced observers using the AO, Evans, Kyle, and Boyd classification systems on two separate occasions 3 months apart. The interobserver and intraobserver variation was assessed using kappa statistics.

RESULTS

The level of agreement for classification into AO groups was almost perfect or substantial, and higher than other classification systems. When the fractures were further classified using the AO classification with subgroups, reliability became worse.

CONCLUSIONS

The current study suggests that the AO classification system with groups can be used more reliably to measure intertrochanteric fractures of the proximal femur than Evans, Kyle, and Boyd classification systems. However, the reliability of the AO classification with subgroups is not satisfactory.

摘要

引言

本研究的目的是确定当前用于股骨近端转子间骨折的分类系统的可靠性,并确定这些系统在经验丰富的骨科医生中的可靠性。

材料与方法

五名经验丰富的观察者分别使用AO、埃文斯(Evans)、凯尔(Kyle)和博伊德(Boyd)分类系统,在相隔3个月的两个不同时间点,对40例股骨近端转子间骨折进行独立分类。使用kappa统计量评估观察者间和观察者内的差异。

结果

AO组分类的一致性水平几乎为完美或高度一致,且高于其他分类系统。当使用带有亚组的AO分类对骨折进行进一步分类时,可靠性变差。

结论

当前研究表明,与埃文斯、凯尔和博伊德分类系统相比,带有组别的AO分类系统在测量股骨近端转子间骨折时可以更可靠地使用。然而,带有亚组的AO分类的可靠性并不令人满意。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验