Suppr超能文献

两种跟骨关节内骨折分类系统的观察者间及观察者内可靠性

Interobserver and intraobserver reliability of two classification systems for intra-articular calcaneal fractures.

作者信息

Lauder Anthony J, Inda David J, Bott Aaron M, Clare Michael P, Fitzgibbons Timothy C, Mormino Matthew A

机构信息

Orthopaedics, University of Nebraska Medical Center, Omaha, NE 68198-1080, USA.

出版信息

Foot Ankle Int. 2006 Apr;27(4):251-5. doi: 10.1177/107110070602700405.

Abstract

BACKGROUND

For a fracture classification to be useful it must provide prognostic significance, interobserver reliability, and intraobserver reproducibility. Most studies have found reliability and reproducibility to be poor for fracture classification schemes. The purpose of this study was to evaluate the interobserver and intraobserver reliability of the Sanders and Crosby-Fitzgibbons classification systems, two commonly used methods for classifying intra-articular calcaneal fractures.

METHODS

Twenty-five CT scans of intra-articular calcaneal fractures occurring at one trauma center were reviewed. The CT images were presented to eight observers (two orthopaedic surgery chief residents, two foot and ankle fellows, two fellowship-trained orthopaedic trauma surgeons, and two fellowship-trained foot and ankle surgeons) on two separate occasions 8 weeks apart. On each viewing, observers were asked to classify the fractures according to both the Sanders and Crosby-Fitzgibbons systems. Interobserver reliability and intraobserver reproducibility were assessed with computer-generated kappa statistics (SAS software; SAS Institute Inc., Cary, North Carolina).

RESULTS

Total unanimity (eight of eight observers assigned the same fracture classification) was achieved only 24% (six of 25) of the time with the Sanders system and 36% (nine of 25) of the time with the Crosby-Fitzgibbons scheme. Interobserver reliability for the Sanders classification method reached a moderate (kappa = 0.48, 0.50) level of agreement, when the subclasses were included. The agreement level increased but remained in the moderate (kappa = 0.55, 0.55) range when the subclasses were excluded. Interobserver agreement reached a substantial (kappa = 0.63, 0.63) level with the Crosby-Fitzgibbons system. Intraobserver reproducibility was better for both schemes. The Sanders system with subclasses included reached moderate (kappa = 0.57) agreement, while ignoring the subclasses brought agreement into the substantial (kappa = 0.77) range. The overall intraobserver agreement was substantial (kappa = 0.74) for the Crosby-Fitzgibbons system.

CONCLUSIONS

Although intraobserver kappa values reached substantial levels and the Crosby-Fitzgibbons system generally showed greater agreement, we were unable to demonstrate excellent interobserver or intraobserver reliability with either classification scheme. While a system with perfect agreement would be impossible, our results indicate that these classifications lack the reproducibility to be considered ideal.

摘要

背景

一种骨折分类方法若要实用,必须具备预后意义、观察者间可靠性和观察者内可重复性。大多数研究发现骨折分类方案的可靠性和可重复性较差。本研究的目的是评估Sanders分类系统和Crosby - Fitzgibbons分类系统的观察者间和观察者内可靠性,这是两种常用的关节内跟骨骨折分类方法。

方法

回顾了在一个创伤中心发生的25例关节内跟骨骨折的CT扫描图像。将CT图像分两次呈现给八位观察者(两名骨科住院总医师、两名足踝专科住院医师、两名接受过专科培训的骨科创伤外科医生和两名接受过专科培训的足踝外科医生),两次间隔8周。每次观察时,要求观察者根据Sanders分类系统和Crosby - Fitzgibbons分类系统对骨折进行分类。使用计算机生成的kappa统计量(SAS软件;SAS Institute Inc.,北卡罗来纳州卡里)评估观察者间可靠性和观察者内可重复性。

结果

使用Sanders分类系统时,仅24%(25例中的6例)的情况下八位观察者全部达成一致(八位观察者都给出相同的骨折分类);使用Crosby - Fitzgibbons分类系统时,这一比例为36%(25例中的9例)。当纳入子类时,Sanders分类方法的观察者间可靠性达到中等(kappa = 0.48, 0.50)一致水平。排除子类时,一致水平有所提高,但仍处于中等(kappa = 0.55, 0.55)范围。使用Crosby - Fitzgibbons分类系统时,观察者间一致性达到实质性(kappa = 0.63, 0.63)水平。两种分类方案的观察者内可重复性都更好。纳入子类时,Sanders分类系统达到中等(kappa = 0.57)一致,而忽略子类则使一致性进入实质性(kappa = 0.77)范围。Crosby - Fitzgibbons分类系统的总体观察者内一致性为实质性(kappa = 0.74)。

结论

尽管观察者内kappa值达到了实质性水平,且Crosby - Fitzgibbons分类系统总体上显示出更高的一致性,但我们无法证明这两种分类方案具有出色的观察者间或观察者内可靠性。虽然不可能有完全一致的系统,但我们的结果表明这些分类缺乏可重复性,不能被视为理想分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验