MieKisz Jacek, Płatkowski Tadeusz
Institute of Applied Mathematics and Mechanics, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland.
J Theor Biol. 2005 Dec 21;237(4):363-8. doi: 10.1016/j.jtbi.2005.04.021. Epub 2005 Jun 8.
We propose a game-theoretic dynamics of a population of replicating individuals. It consists of two parts: the standard replicator one and a migration between two different habitats. We consider symmetric two-player games with two evolutionarily stable strategies: the efficient one in which the population is in a state with a maximal payoff and the risk-dominant one where players are averse to risk. We show that for a large range of parameters of our dynamics, even if the initial conditions in both habitats are in the basin of attraction of the risk-dominant equilibrium (with respect to the standard replication dynamics without migration), in the long run most individuals play the efficient strategy.
我们提出了一种关于复制个体群体的博弈论动力学。它由两部分组成:标准复制部分和在两个不同栖息地之间的迁移。我们考虑具有两种进化稳定策略的对称两人博弈:一种是有效策略,群体处于具有最大收益的状态;另一种是风险主导策略,玩家厌恶风险。我们表明,对于我们动力学的大范围参数,即使两个栖息地的初始条件都处于风险主导均衡的吸引域内(相对于没有迁移的标准复制动力学),从长远来看,大多数个体都会采用有效策略。