Ficici Sevan G, Pollack Jordan B
Department of Computer Science, Brandeis University, Waltham, MA 02454, USA.
J Theor Biol. 2007 Aug 7;247(3):426-41. doi: 10.1016/j.jtbi.2007.03.004. Epub 2007 Mar 12.
The hawk-dove (HD) game, as defined by Maynard Smith [1982. Evolution and the Theory of Games. Cambridge University Press, Cambridge], allows for a polymorphic fitness equilibrium (PFE) to exist between its two pure strategies; this polymorphism is the attractor of the standard replicator dynamics [Taylor, P.D., Jonker, L., 1978. Evolutionarily stable strategies and game dynamics. Math. Biosci. 40, 145-156; Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge] operating on an infinite population of pure-strategists. Here, we consider stochastic replicator dynamics, operating on a finite population of pure-strategists playing games similar to HD; in particular, we examine the transient behavior of the system, before it enters an absorbing state due to sampling error. Though stochastic replication prevents the population from fixing onto the PFE, selection always favors the under-represented strategy. Thus, we may naively expect that the mean population state (of the pre-absorption transient) will correspond to the PFE. The empirical results of Fogel et al. [1997. On the instability of evolutionary stable states. BioSystems 44, 135-152] show that the mean population state, in fact, deviates from the PFE with statistical significance. We provide theoretical results that explain their observations. We show that such deviation away from the PFE occurs when the selection pressures that surround the fitness-equilibrium point are asymmetric. Further, we analyze a Markov model to prove that a finite population will generate a distribution over population states that equilibrates selection-pressure asymmetry; the mean of this distribution is generally not the fitness-equilibrium state.
鹰鸽(HD)博弈由梅纳德·史密斯(1982年,《进化与博弈论》,剑桥大学出版社,剑桥)定义,其两个纯策略之间存在多态适应度均衡(PFE);这种多态性是作用于无限纯策略者群体的标准复制动态(泰勒,P.D.,琼克,L.,1978年,《进化稳定策略与博弈动态》,数学生物学,40卷,145 - 156页;霍夫鲍尔,J.,西格蒙德,K.,1998年,《进化博弈与种群动态》,剑桥大学出版社,剑桥)的吸引子。在此,我们考虑作用于有限纯策略者群体(他们进行类似于HD的博弈)的随机复制动态;特别地,我们研究系统在因抽样误差进入吸收态之前的瞬态行为。尽管随机复制阻止种群固定到PFE,但选择总是有利于代表性不足的策略。因此,我们可能天真地期望(吸收前瞬态的)种群平均状态将对应于PFE。福格尔等人(1997年,《论进化稳定状态的不稳定性》,生物系统,44卷,135 - 152页)的实证结果表明,事实上种群平均状态与PFE存在统计学显著偏差。我们提供理论结果来解释他们的观察结果。我们表明,当围绕适应度均衡点的选择压力不对称时,就会出现这种偏离PFE的情况。此外,我们分析一个马尔可夫模型以证明有限种群将在种群状态上产生一种分布,该分布会平衡选择压力的不对称性;这种分布的均值通常不是适应度均衡状态。