Huang Gordon H, Linton Jonathan D, Yeomans Julian Scott, Yoogalingam Reena
Faculty of Engineering, University of Regina, Regina, SK S4S 0A2, Canada.
J Environ Manage. 2005 Oct;77(1):22-34. doi: 10.1016/j.jenvman.2005.02.008.
Evolutionary simulation-optimization (ESO) techniques can be adapted to model a wide variety of problem types in which system components are stochastic. Grey programming (GP) methods have been previously applied to numerous environmental planning problems containing uncertain information. In this paper, ESO is combined with GP for policy planning to create a hybrid solution approach named GESO. It can be shown that multiple policy alternatives meeting required system criteria, or modelling-to-generate-alternatives (MGA), can be quickly and efficiently created by applying GESO to this case data. The efficacy of GESO is illustrated using a municipal solid waste management case taken from the regional municipality of Hamilton-Wentworth in the Province of Ontario, Canada. The MGA capability of GESO is especially meaningful for large-scale real-world planning problems and the practicality of this procedure can easily be extended from MSW systems to many other planning applications containing significant sources of uncertainty.
进化模拟优化(ESO)技术可用于对各种系统组件具有随机性的问题类型进行建模。灰色规划(GP)方法此前已应用于众多包含不确定信息的环境规划问题。本文将ESO与GP相结合用于政策规划,创建了一种名为GESO的混合解决方案方法。结果表明,通过将GESO应用于该案例数据,可以快速有效地创建满足所需系统标准的多个政策备选方案,即建模生成备选方案(MGA)。使用加拿大安大略省汉密尔顿-温特沃斯地区市政当局的城市固体废物管理案例说明了GESO的有效性。GESO的MGA能力对于大规模实际规划问题尤其有意义,并且该程序的实用性可以很容易地从城市固体废物系统扩展到许多其他包含大量不确定性来源的规划应用中。