Liao Jung-Chi, Jeong Yong-Joo, Kim Dong-Eun, Patel Smita S, Oster George
Departments of Molecular and Cell Biology and ESPM, University of California, Berkeley, CA 94720-3112, USA.
J Mol Biol. 2005 Jul 15;350(3):452-75. doi: 10.1016/j.jmb.2005.04.051.
The bacteriophage T7 helicase is a ring-shaped hexameric motor protein that unwinds double-stranded DNA during DNA replication and recombination. To accomplish this it couples energy from the nucleotide hydrolysis cycle to translocate along one of the DNA strands. Here, we combine computational biology with new biochemical measurements to infer the following properties of the T7 helicase: (1) all hexameric subunits are catalytic; (2) the mechanical movement along the DNA strand is driven by the binding transition of nucleotide into the catalytic site; (3) hydrolysis is coordinated between adjacent subunits that bind DNA; (4) the hydrolysis step changes the affinity of a subunit for DNA allowing passage of DNA from one subunit to the next. We construct a numerical optimization scheme to analyze transient and steady-state biochemical measurements to determine the rate constants for the hydrolysis cycle and determine the flux distribution through the reaction network. We find that, under physiological and experimental conditions, there is no dominant pathway; rather there is a distribution of pathways that varies with the ambient conditions. Our analysis methods provide a systematic procedure to study kinetic pathways of multi-subunit, multi-state cooperative enzymes.
噬菌体T7解旋酶是一种环状六聚体马达蛋白,在DNA复制和重组过程中解开双链DNA。为实现这一功能,它将核苷酸水解循环产生的能量与沿其中一条DNA链的移位相耦合。在此,我们将计算生物学与新的生化测量相结合,以推断T7解旋酶的以下特性:(1)所有六聚体亚基都具有催化活性;(2)沿DNA链的机械运动由核苷酸与催化位点的结合转变驱动;(3)水解在结合DNA的相邻亚基之间协同进行;(4)水解步骤改变亚基对DNA的亲和力,使DNA从一个亚基传递到下一个亚基。我们构建了一个数值优化方案,以分析瞬态和稳态生化测量结果,确定水解循环的速率常数,并确定通过反应网络的通量分布。我们发现,在生理和实验条件下,不存在主导途径;相反,存在随环境条件变化的途径分布。我们的分析方法提供了一种系统程序,用于研究多亚基、多状态协同酶的动力学途径。