Suppr超能文献

臭氧暴露与死亡率:一项经验贝叶斯元回归分析

Ozone exposure and mortality: an empiric bayes metaregression analysis.

作者信息

Levy Jonathan I, Chemerynski Susan M, Sarnat Jeremy A

机构信息

Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02215, USA.

出版信息

Epidemiology. 2005 Jul;16(4):458-68. doi: 10.1097/01.ede.0000165820.08301.b3.

Abstract

BACKGROUND

Results from time-series epidemiologic studies evaluating the relationship between ambient ozone concentrations and premature mortality vary in their conclusions about the magnitude of this relationship, if any, making it difficult to estimate public health benefits of air pollution control measures. We conducted an empiric Bayes metaregression to estimate the ozone effect on mortality, and to assess whether this effect varies as a function of hypothesized confounders or effect modifiers.

METHODS

We gathered 71 time-series studies relating ozone to all-cause mortality, and we selected 48 estimates from 28 studies for the metaregression. Metaregression covariates included the relationship between ozone concentrations and concentrations of other air pollutants, proxies for personal exposure-ambient concentration relationships, and the statistical methods used in the studies. For our metaregression, we applied a hierarchical linear model with known level-1 variances.

RESULTS

We estimated a grand mean of a 0.21% increase (95% confidence interval = 0.16-0.26%) in mortality per 10-microg/m increase of 1-hour maximum ozone (0.41% increase per 10 ppb) without controlling for other air pollutants. In the metaregression, air-conditioning prevalence and lag time were the strongest predictors of between-study variability. Air pollution covariates yielded inconsistent findings in regression models, although correlation analyses indicated a potential influence of summertime PM2.5.

CONCLUSIONS

These findings, coupled with a greater relative risk of ozone in the summer versus the winter, demonstrate that geographic and seasonal heterogeneity in ozone relative risk should be anticipated, but that the observed relationship between ozone and mortality should be considered for future regulatory impact analyses.

摘要

背景

评估环境臭氧浓度与过早死亡率之间关系的时间序列流行病学研究结果,在这种关系(如果存在)的程度结论上存在差异,这使得难以估计空气污染控制措施对公众健康的益处。我们进行了经验贝叶斯元回归,以估计臭氧对死亡率的影响,并评估这种影响是否随假设的混杂因素或效应修饰因素而变化。

方法

我们收集了71项将臭氧与全因死亡率相关联的时间序列研究,并从28项研究中选择了48个估计值进行元回归。元回归协变量包括臭氧浓度与其他空气污染物浓度之间的关系、个人暴露与环境浓度关系的替代指标,以及研究中使用的统计方法。对于我们的元回归,我们应用了具有已知一级方差的分层线性模型。

结果

在不控制其他空气污染物的情况下,我们估计每增加10微克/立方米的1小时最大臭氧浓度,死亡率平均增加0.21%(95%置信区间 = 0.16 - 0.26%)(每增加10 ppb增加0.41%)。在元回归中,空调普及率和滞后时间是研究间变异性的最强预测因素。空气污染协变量在回归模型中得出的结果不一致,尽管相关分析表明夏季PM2.5有潜在影响。

结论

这些发现,再加上夏季与冬季相比臭氧的相对风险更高,表明应预期臭氧相对风险存在地理和季节异质性,但在未来的监管影响分析中应考虑观察到的臭氧与死亡率之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验