Liang Ciao-Kai, West J Jason, Silva Raquel A, Bian Huisheng, Chin Mian, Davila Yanko, Dentener Frank J, Emmons Louisa, Flemming Johannes, Folberth Gerd, Henze Daven, Im Ulas, Jonson Jan Eiof, Keating Terry J, Kucsera Tom, Lenzen Allen, Lin Meiyun, Lund Marianne Tronstad, Pan Xiaohua, Park Rokjin J, Pierce R Bradley, Sekiya Takashi, Sudo Kengo, Takemura Toshihiko
Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Oak Ridge Institute for Science and Education at US Environmental Protection Agency, Research Triangle Park, NC, USA.
Atmos Chem Phys. 2018;18(14):10497-10520. doi: 10.5194/acp-18-10497-2018. Epub 2018 Jul 23.
Ambient air pollution from ozone and fine particulate matter is associated with premature mortality. As emissions from one continent influence air quality over others, changes in emissions can also influence human health on other continents. We estimate global air pollution-related premature mortality from exposure to PM and ozone, and the avoided deaths from 20% anthropogenic emission reductions from six source regions, North America (NAM), Europe (EUR), South Asia (SAS), East Asia (EAS), Russia/Belarus/Ukraine (RBU) and the Middle East (MDE), three global emission sectors, Power and Industry (PIN), Ground Transportation (TRN) and Residential (RES) and one global domain (GLO), using an ensemble of global chemical transport model simulations coordinated by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2), and epidemiologically-derived concentration-response functions. We build on results from previous studies of the TF-HTAP by using improved atmospheric models driven by new estimates of 2010 anthropogenic emissions (excluding methane), with more source and receptor regions, new consideration of source sector impacts, and new epidemiological mortality functions. We estimate 290,000 (95% CI: 30,000, 600,000) premature O-related deaths and 2.8 million (0.5 million, 4.6 million) PM-related premature deaths globally for the baseline year 2010. While 20% emission reductions from one region generally lead to more avoided deaths within the source region than outside, reducing emissions from MDE and RBU can avoid more O-related deaths outside of these regions than within, and reducing MDE emissions also avoids more PM-related deaths outside of MDE than within. Our findings that most avoided O-related deaths from emission reductions in NAM and EUR occur outside of those regions contrast with those of previous studies, while estimates of PM-related deaths from NAM, EUR, SAS and EAS emission reductions agree well. In addition, EUR, MDE and RBU have more avoided O-related deaths from reducing foreign emissions than from domestic reductions. For six regional emission reductions, the total avoided extra-regional mortality is estimated as 6,000 (-3,400, 15,500) deaths/year and 25,100 (8,200, 35,800) deaths/year through changes in O and PM, respectively. Interregional transport of air pollutants leads to more deaths through changes in PM than in O, even though O is transported more on interregional scales, since PM has a stronger influence on mortality. For NAM and EUR, our estimates of avoided mortality from regional and extra-regional emission reductions are comparable to those estimated by regional models for these same experiments. In sectoral emission reductions, TRN emissions account for the greatest fraction (26-53% of global emission reduction) of O-related premature deaths in most regions, in agreement with previous studies, except for EAS (58%) and RBU (38%) where PIN emissions dominate. In contrast, PIN emission reductions have the greatest fraction (38-78% of global emission reduction) of PM-related deaths in most regions, except for SAS (45%) where RES emission dominates, which differs with previous studies in which RES emissions dominate global health impacts. The spread of air pollutant concentration changes across models contributes most to the overall uncertainty in estimated avoided deaths, highlighting the uncertainty in results based on a single model. Despite uncertainties, the health benefits of reduced intercontinental air pollution transport suggest that international cooperation may be desirable to mitigate pollution transported over long distances.
臭氧和细颗粒物造成的环境空气污染与过早死亡相关。由于一个大陆的排放会影响其他大陆的空气质量,排放变化也会影响其他大陆的人类健康。我们利用由空气污染半球输送问题特别工作组第二阶段(TF-HTAP2)协调的全球化学传输模型模拟集合以及基于流行病学得出的浓度-反应函数,估算了因接触细颗粒物(PM)和臭氧导致的全球与空气污染相关的过早死亡人数,以及六个源区(北美(NAM)、欧洲(EUR)、南亚(SAS)、东亚(EAS)、俄罗斯/白俄罗斯/乌克兰(RBU)和中东(MDE))、三个全球排放部门(电力和工业(PIN)、地面交通(TRN)和住宅(RES))和一个全球区域(GLO)人为排放量减少20%所避免的死亡人数。我们基于TF-HTAP先前研究的结果,采用了由2010年人为排放量(不包括甲烷)的新估计值驱动的改进大气模型,涵盖了更多的源区和受体区,重新考虑了源部门的影响以及新的流行病学死亡函数。我们估计,在2010年基准年,全球因臭氧相关的过早死亡人数为29万(95%置信区间:3万,60万),因细颗粒物相关的过早死亡人数为280万(50万,460万)。虽然一个地区排放量减少20%通常会使源区内避免的死亡人数多于区外,但减少中东和俄罗斯/白俄罗斯/乌克兰地区的排放所避免的臭氧相关死亡人数在这些地区之外多于区内,减少中东地区的排放还能避免更多的细颗粒物相关死亡人数在中东地区之外多于区内。我们的研究结果表明,北美和欧洲减排所避免的大多数臭氧相关死亡发生在这些地区之外,这与先前的研究结果相反,而北美、欧洲、南亚和东亚减排导致的细颗粒物相关死亡人数估计结果则较为一致。此外,欧洲、中东和俄罗斯/白俄罗斯/乌克兰通过减少国外排放所避免的臭氧相关死亡人数多于国内减排。对于六个区域的减排,通过臭氧和细颗粒物变化估计每年避免的区域外额外死亡人数分别为6000(-3400,15500)人和25100(8200,35800)人。尽管臭氧在区域间尺度上的传输更多,但空气污染物浓度变化在区域间的传输通过细颗粒物导致的死亡人数多于臭氧,因为细颗粒物对死亡率的影响更强。对于北美和欧洲,我们对区域和区域外减排所避免的死亡率的估计与这些相同实验的区域模型估计结果相当。在部门减排方面,与先前研究一致,在大多数地区,地面交通排放占臭氧相关过早死亡的最大比例(全球减排的26 - 53%),东亚(58%)和俄罗斯/白俄罗斯/乌克兰(38%)除外,这两个地区电力和工业排放占主导。相比之下,在大多数地区,电力和工业减排占细颗粒物相关死亡的最大比例(全球减排的38 - 78%),南亚(45%)除外,该地区住宅排放占主导,这与先前认为住宅排放主导全球健康影响的研究不同。模型间空气污染物浓度变化的差异对估计的避免死亡总不确定性贡献最大,突出了基于单一模型结果的不确定性。尽管存在不确定性,但减少洲际空气污染传输带来的健康益处表明,国际合作对于减轻远距离传输的污染可能是可取的。