Myers Chad L, Chen Xing, Troyanskaya Olga G
Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Princeton, NJ 08544, USA.
BMC Bioinformatics. 2005 Jun 13;6:146. doi: 10.1186/1471-2105-6-146.
Chromosomal copy number changes (aneuploidies) play a key role in cancer progression and molecular evolution. These copy number changes can be studied using microarray-based comparative genomic hybridization (array CGH) or gene expression microarrays. However, accurate identification of amplified or deleted regions requires a combination of visual and computational analysis of these microarray data.
We have developed ChARMView, a visualization and analysis system for guided discovery of chromosomal abnormalities from microarray data. Our system facilitates manual or automated discovery of aneuploidies through dynamic visualization and integrated statistical analysis. ChARMView can be used with array CGH and gene expression microarray data, and multiple experiments can be viewed and analyzed simultaneously.
ChARMView is an effective and accurate visualization and analysis system for recognizing even small aneuploidies or subtle expression biases, identifying recurring aberrations in sets of experiments, and pinpointing functionally relevant copy number changes. ChARMView is freely available under the GNU GPL at http://function.princeton.edu/ChARMView.
染色体拷贝数变化(非整倍体)在癌症进展和分子进化中起关键作用。这些拷贝数变化可通过基于微阵列的比较基因组杂交(阵列CGH)或基因表达微阵列进行研究。然而,准确识别扩增或缺失区域需要对这些微阵列数据进行视觉和计算分析相结合。
我们开发了ChARMView,这是一个用于从微阵列数据中引导发现染色体异常的可视化和分析系统。我们的系统通过动态可视化和综合统计分析促进手动或自动发现非整倍体。ChARMView可用于阵列CGH和基因表达微阵列数据,并且可以同时查看和分析多个实验。
ChARMView是一个有效且准确的可视化和分析系统,可用于识别即使是小的非整倍体或细微的表达偏差,识别实验集中反复出现的畸变,并精确定位功能相关的拷贝数变化。ChARMView可在GNU GPL许可下从http://function.princeton.edu/ChARMView免费获取。