Trubitsin Boris V, Ptushenko Vasilii V, Koksharova Olga A, Mamedov Mahir D, Vitukhnovskaya Liya A, Grigor'ev Igor A, Semenov Alexey Yu, Tikhonov Alexander N
Department of Biophysics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.
Biochim Biophys Acta. 2005 Jun 30;1708(2):238-49. doi: 10.1016/j.bbabio.2005.03.004. Epub 2005 Mar 23.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP(+), and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700(+).
在这项工作中,我们研究了集胞藻6803(Synechocystis sp. PCC 6803)中的电子传递过程,特别着重于光合和呼吸电子传递链之间的氧依赖相互关系。在相同实验条件下,通过电子顺磁共振(EPR)方法测量了光系统I原初供体P700的氧化还原瞬变和氧交换过程。为了区分控制通过光合和呼吸电子传递链的电子流的因素,我们比较了野生型细胞以及光系统II和末端氧化酶(CtaI、CydAB、CtaDEII)受损的突变体中的P700氧化还原瞬变和氧交换过程。结果表明,通过光合和呼吸电子传递链的电子流速率强烈依赖于细胞悬液中的跨膜质子梯度和氧浓度。通过光系统I的电子传递受两种主要机制控制:(i)氧依赖的从光系统I到NADP(+)的电子转移加速,以及(ii)由类囊体腔内pH值控制的光系统II和光系统I之间电子流的减慢。对P700氧化还原瞬变的抑制剂分析使我们得出结论,来自脱氢酶和循环电子传递途径的电子通量占从系统间电子传递链到P700(+)的总电子通量的20 - 30%。