Ermakova Maria, Huokko Tuomas, Richaud Pierre, Bersanini Luca, Howe Christopher J, Lea-Smith David J, Peltier Gilles, Allahverdiyeva Yagut
Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.).
Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland (M.E., T.H., L.B., Y.A.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Cadarache, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Centre National de la Recherche Scientifique, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13108 Saint-Paul-lez-Durance, France (P.R., G.P.);Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265, F-13284 Marseille, France (P.R., G.P.); andDepartment of Biochemistry, University of Cambridge, Cambridge, CB2 1QW United Kingdom (C.J.H., D.J.L.-S.)
Plant Physiol. 2016 Jun;171(2):1307-19. doi: 10.1104/pp.16.00479. Epub 2016 Apr 18.
Various oxygen-utilizing electron sinks, including the soluble flavodiiron proteins (Flv1/3), and the membrane-localized respiratory terminal oxidases (RTOs), cytochrome c oxidase (Cox) and cytochrome bd quinol oxidase (Cyd), are present in the photosynthetic electron transfer chain of Synechocystis sp. PCC 6803. However, the role of individual RTOs and their relative importance compared with other electron sinks are poorly understood, particularly under light. Via membrane inlet mass spectrometry gas exchange, chlorophyll a fluorescence, P700 analysis, and inhibitor treatment of the wild type and various mutants deficient in RTOs, Flv1/3, and photosystem I, we investigated the contribution of these complexes to the alleviation of excess electrons in the photosynthetic chain. To our knowledge, for the first time, we demonstrated the activity of Cyd in oxygen uptake under light, although it was detected only upon inhibition of electron transfer at the cytochrome b6f site and in ∆flv1/3 under fluctuating light conditions, where linear electron transfer was drastically inhibited due to impaired photosystem I activity. Cox is mostly responsible for dark respiration and competes with P700 for electrons under high light. Only the ∆cox/cyd double mutant, but not single mutants, demonstrated a highly reduced plastoquinone pool in darkness and impaired gross oxygen evolution under light, indicating that thylakoid-based RTOs are able to compensate partially for each other. Thus, both electron sinks contribute to the alleviation of excess electrons under illumination: RTOs continue to function under light, operating on slower time ranges and on a limited scale, whereas Flv1/3 responds rapidly as a light-induced component and has greater capacity.
多种利用氧气的电子汇存在于集胞藻PCC 6803的光合电子传递链中,包括可溶性黄素二铁蛋白(Flv1/3)以及膜定位的呼吸末端氧化酶(RTOs)、细胞色素c氧化酶(Cox)和细胞色素bd泛醌氧化酶(Cyd)。然而,单个RTOs的作用以及它们与其他电子汇相比的相对重要性却知之甚少,尤其是在光照条件下。通过膜进样质谱气体交换、叶绿素a荧光、P700分析以及对野生型和各种缺乏RTOs、Flv1/3和光系统I的突变体进行抑制剂处理,我们研究了这些复合物对光合链中过剩电子缓解的贡献。据我们所知,我们首次证明了Cyd在光照下的吸氧活性,尽管只有在细胞色素b6f位点的电子传递受到抑制时以及在波动光照条件下的∆flv1/3中才能检测到,在波动光照条件下,由于光系统I活性受损,线性电子传递受到严重抑制。Cox主要负责暗呼吸,在高光下与P700竞争电子。只有∆cox/cyd双突变体,而不是单突变体,在黑暗中表现出高度还原的质体醌库,在光照下总氧释放受损,这表明类囊体膜上的RTOs能够部分相互补偿。因此,这两个电子汇都有助于在光照下缓解过剩电子:RTOs在光照下继续发挥作用,在较慢的时间范围内和有限的规模上运行,而Flv1/3作为光诱导成分反应迅速且容量更大。