Suppr超能文献

一种用于感知学习的统一模型。

A unified model for perceptual learning.

作者信息

Seitz Aaron, Watanabe Takeo

机构信息

Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Trends Cogn Sci. 2005 Jul;9(7):329-34. doi: 10.1016/j.tics.2005.05.010.

Abstract

Perceptual learning in adult humans and animals refers to improvements in sensory abilities after training. These improvements had been thought to occur only when attention is focused on the stimuli to be learned (task-relevant learning) but recent studies demonstrate performance improvements outside the focus of attention (task-irrelevant learning). Here, we propose a unified model that explains both task-relevant and task-irrelevant learning. The model suggests that long-term sensitivity enhancements to task-relevant or irrelevant stimuli occur as a result of timely interactions between diffused signals triggered by task performance and signals produced by stimulus presentation. The proposed mechanism uses multiple attentional and reinforcement systems that rely on different underlying neuromodulators. Our model provides insights into how neural modulators, attentional and reinforcement learning systems are related.

摘要

成年人类和动物的知觉学习是指训练后感觉能力的提高。这些提高曾被认为只有在注意力集中于要学习的刺激(与任务相关的学习)时才会发生,但最近的研究表明,在注意力焦点之外(与任务无关的学习)也会有表现的提高。在此,我们提出一个统一的模型,该模型可以解释与任务相关和与任务无关的学习。该模型表明,对与任务相关或无关刺激的长期敏感性增强是由任务执行触发的扩散信号与刺激呈现产生的信号之间的及时相互作用导致的。所提出的机制使用了多个依赖于不同潜在神经调节剂的注意力和强化系统。我们的模型为神经调节剂、注意力和强化学习系统之间的关系提供了见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验