Suppr超能文献

感知学习的分层贝叶斯增强赫布重加权模型

Hierarchical Bayesian Augmented Hebbian Reweighting Model of Perceptual Learning.

作者信息

Lu Zhong-Lin, Yang Shanglin, Dosher Barbara

机构信息

Division of Arts and Sciences, NYU Shanghai, Shanghai, China; Center for Neural Science and Department of Psychology, New York University, New York, USA; NYU-ECNU Institute of Brain and Cognitive Science, Shanghai, China.

Division of Arts and Sciences, NYU Shanghai, Shanghai, China.

出版信息

bioRxiv. 2024 Aug 9:2024.08.08.606902. doi: 10.1101/2024.08.08.606902.

Abstract

The Augmented Hebbian Reweighting Model (AHRM) has been effectively utilized to model the collective performance of observers in various perceptual learning studies. In this work, we have introduced a novel hierarchical Bayesian Augmented Hebbian Reweighting Model (HB-AHRM) to simultaneously model the learning curves of individual participants and the entire population within a single framework. We have compared its performance to that of a Bayesian Inference Procedure (BIP), which independently estimates the posterior distributions of model parameters for each individual subject without employing a hierarchical structure. To cope with the substantial computational demands, we developed an approach to approximate the likelihood function in the AHRM with feature engineering and linear regression, increasing the speed of the estimation procedure by 20,000 times. The HB-AHRM has enabled us to compute the joint posterior distribution of hyperparameters and parameters at the population, observer, and test levels, facilitating statistical inferences across these levels. While we have developed this methodology within the context of a single experiment, the HB-AHRM and the associated modeling techniques can be readily applied to analyze data from various perceptual learning experiments and provide predictions of human performance at both the population and individual levels. The likelihood approximation concept introduced in this study may have broader utility in fitting other stochastic models lacking analytic forms.

摘要

增强型赫布重加权模型(AHRM)已被有效地用于对各种感知学习研究中观察者的集体表现进行建模。在这项工作中,我们引入了一种新颖的分层贝叶斯增强型赫布重加权模型(HB-AHRM),以便在单个框架内同时对个体参与者和总体的学习曲线进行建模。我们将其性能与贝叶斯推理程序(BIP)的性能进行了比较,BIP在不采用分层结构的情况下独立估计每个个体受试者模型参数的后验分布。为了应对巨大的计算需求,我们开发了一种方法,通过特征工程和线性回归来近似AHRM中的似然函数,将估计过程的速度提高了20000倍。HB-AHRM使我们能够计算总体、观察者和测试水平上超参数和参数的联合后验分布,便于跨这些水平进行统计推断。虽然我们是在单个实验的背景下开发这种方法的,但HB-AHRM和相关的建模技术可以很容易地应用于分析来自各种感知学习实验的数据,并在总体和个体水平上提供人类表现的预测。本研究中引入的似然近似概念在拟合其他缺乏解析形式的随机模型时可能具有更广泛的用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/574e/11326272/8710cdd098a5/nihpp-2024.08.08.606902v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验