用于热声层析成像的加权期望最大化重建算法。
Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography.
作者信息
Zhang Jin, Anastasio Mark A, Pan Xiaochuan, Wang Lihong V
出版信息
IEEE Trans Med Imaging. 2005 Jun;24(6):817-20. doi: 10.1109/TMI.2005.848372.
Thermoacoustic tomography (TAT) is an emerging imaging technique with potential for a wide range of biomedical imaging applications. In this correspondence, we propose an infinite family of weighted expectation maximization (EM) algorithms for reconstruction of images from temporally truncated TAT measurement data. The weighted EM algorithms are equivalent mathematically to the conventional EM algorithm, but are shown to propagate data inconsistencies in different ways. Using simulated and experimental TAT measurement data, we demonstrate that suitable choices of weighted EM algorithms can effectively mitigate image artifacts that are attributable to temporal truncation of the TAT data function.
热声层析成像(TAT)是一种新兴的成像技术,在广泛的生物医学成像应用中具有潜力。在本通信中,我们提出了一族无穷的加权期望最大化(EM)算法,用于从时间截断的TAT测量数据重建图像。加权EM算法在数学上等同于传统的EM算法,但显示出以不同方式传播数据不一致性。使用模拟和实验TAT测量数据,我们证明了加权EM算法的合适选择可以有效减轻由于TAT数据函数的时间截断而产生的图像伪影。