Suppr超能文献

用于图像重建和传感器场估计的最大熵期望最大化算法。

Maximum-entropy expectation-maximization algorithm for image reconstruction and sensor field estimation.

作者信息

Hong Hunsop, Schonfeld Dan

机构信息

Multimedia Communications Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607-7053, USA.

出版信息

IEEE Trans Image Process. 2008 Jun;17(6):897-907. doi: 10.1109/TIP.2008.921996.

Abstract

In this paper, we propose a maximum-entropy expectation-maximization (MEEM) algorithm. We use the proposed algorithm for density estimation. The maximum-entropy constraint is imposed for smoothness of the estimated density function. The derivation of the MEEM algorithm requires determination of the covariance matrix in the framework of the maximum-entropy likelihood function, which is difficult to solve analytically. We, therefore, derive the MEEM algorithm by optimizing a lower-bound of the maximum-entropy likelihood function. We note that the classical expectation-maximization (EM) algorithm has been employed previously for 2-D density estimation. We propose to extend the use of the classical EM algorithm for image recovery from randomly sampled data and sensor field estimation from randomly scattered sensor networks. We further propose to use our approach in density estimation, image recovery and sensor field estimation. Computer simulation experiments are used to demonstrate the superior performance of the proposed MEEM algorithm in comparison to existing methods.

摘要

在本文中,我们提出了一种最大熵期望最大化(MEEM)算法。我们将所提出的算法用于密度估计。为使估计的密度函数具有平滑性而施加了最大熵约束。MEEM算法的推导需要在最大熵似然函数的框架内确定协方差矩阵,而这很难通过解析方法求解。因此,我们通过优化最大熵似然函数的一个下界来推导MEEM算法。我们注意到,经典的期望最大化(EM)算法此前已用于二维密度估计。我们建议将经典EM算法的应用扩展到从随机采样数据进行图像恢复以及从随机散布的传感器网络进行传感器场估计。我们还建议在密度估计、图像恢复和传感器场估计中使用我们的方法。通过计算机模拟实验来证明所提出的MEEM算法相较于现有方法具有优越的性能。

相似文献

1
Maximum-entropy expectation-maximization algorithm for image reconstruction and sensor field estimation.
IEEE Trans Image Process. 2008 Jun;17(6):897-907. doi: 10.1109/TIP.2008.921996.
2
Attraction-repulsion expectation-maximization algorithm for image reconstruction and sensor field estimation.
IEEE Trans Image Process. 2009 Sep;18(9):2004-11. doi: 10.1109/TIP.2009.2024574. Epub 2009 Jun 5.
3
Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography.
IEEE Trans Med Imaging. 2005 Jun;24(6):817-20. doi: 10.1109/TMI.2005.848372.
4
Fast 3D iterative image reconstruction for SPECT with rotating slat collimators.
Phys Med Biol. 2009 Feb 7;54(3):715-29. doi: 10.1088/0031-9155/54/3/016. Epub 2009 Jan 9.
5
Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data.
IEEE Trans Image Process. 2008 Oct;17(10):1737-54. doi: 10.1109/TIP.2008.2001399.
6
DCT-based complexity regularization for EM tomographic reconstruction.
IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):801-5. doi: 10.1109/TBME.2007.912635.
7
On classification with incomplete data.
IEEE Trans Pattern Anal Mach Intell. 2007 Mar;29(3):427-36. doi: 10.1109/TPAMI.2007.52.
8
Reconstruction of 2D PET data with Monte Carlo generated system matrix for generalized natural pixels.
Phys Med Biol. 2006 Jun 21;51(12):3105-25. doi: 10.1088/0031-9155/51/12/008. Epub 2006 May 31.
10
A modified OSEM algorithm for PET reconstruction using wavelet processing.
Comput Methods Programs Biomed. 2005 Dec;80(3):236-45. doi: 10.1016/j.cmpb.2005.09.004. Epub 2005 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验