Suppr超能文献

加权期望最大化重建算法及其在门控兆伏级断层扫描中的应用

Weighted expectation maximization reconstruction algorithms with application to gated megavoltage tomography.

作者信息

Zhang Jin, Shi Daxin, Anastasio Mark A, Sillanpaa Jussi, Chang Jenghwa

机构信息

Department of Biomedical Engineering, Illinois Institute of Technology, 10 West 32nd Street, E1-116, Chicago, IL 60616, USA.

出版信息

Phys Med Biol. 2005 Nov 7;50(21):N299-307. doi: 10.1088/0031-9155/50/21/N02. Epub 2005 Oct 12.

Abstract

We propose and investigate weighted expectation maximization (EM) algorithms for image reconstruction in x-ray tomography. The development of the algorithms is motivated by the respiratory-gated megavoltage tomography problem, in which the acquired asymmetric cone-beam projections are limited in number and unevenly sampled over view angle. In these cases, images reconstructed by use of the conventional EM algorithm can contain ring- and streak-like artefacts that are attributable to a combination of data inconsistencies and truncation of the projection data. By use of computer-simulated and clinical gated fan-beam megavoltage projection data, we demonstrate that the proposed weighted EM algorithms effectively mitigate such image artefacts.

摘要

我们提出并研究了用于X射线断层扫描图像重建的加权期望最大化(EM)算法。这些算法的开发源于呼吸门控兆伏级断层扫描问题,在该问题中,获取的非对称锥束投影数量有限且在视角上采样不均匀。在这些情况下,使用传统EM算法重建的图像可能包含环形和条纹状伪影,这些伪影可归因于数据不一致和投影数据截断的综合影响。通过使用计算机模拟和临床门控扇形束兆伏级投影数据,我们证明了所提出的加权EM算法有效地减轻了此类图像伪影。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验