Arita Masanori, Robert Martin, Tomita Masaru
Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, 997-0017 Yamagata, Japan.
Curr Opin Biotechnol. 2005 Jun;16(3):344-9. doi: 10.1016/j.copbio.2005.04.004.
Biological simulation serves to unify the basic elements of systems biology, namely, model selection, experimentation and model refinement. To select biochemical models for simulation, metabolome analysis can be performed using capillary electrophoresis or liquid chromatography coupled with mass spectrometry. In this manner, selected models can be elaborated with temporal/spatial gene and protein expression data obtained from model organisms such as Escherichia coli. The E. coli single gene deletion mutant library (KO collection) and His-tag/GFP-fusion single open reading frame clone expression library (ASKA) are powerful resources for this task. The integration of parallel experimental datasets into dynamic simulation tools forms the remaining challenge for the systematic analysis and elucidation of biological networks and holds promise for biotechnological applications.
生物模拟有助于统一系统生物学的基本要素,即模型选择、实验和模型优化。为了选择用于模拟的生化模型,可以使用毛细管电泳或液相色谱与质谱联用进行代谢组分析。通过这种方式,可以利用从诸如大肠杆菌等模式生物获得的时空基因和蛋白质表达数据来完善所选模型。大肠杆菌单基因缺失突变体文库(KO文库)和His标签/GFP融合单开放阅读框克隆表达文库(ASKA)是完成这项任务的强大资源。将并行实验数据集整合到动态模拟工具中,是系统分析和阐明生物网络的剩余挑战,并且有望应用于生物技术领域。